Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor

Open access

Abstract

The health risk from thoron (Rn-220) is usually ignored owing to its short half-life (55.6 s), but the generated thoron decay products can cause a significant dose contribution. In this study, altogether 51 Slovenian soil samples were investigated using an accumulation chamber technique to obtain information about thoron exhalation features. The obtained (massic) thoron exhalation results varied between 6.9 and 149 mBq·kg−1·s−1 (average: 55.2 mBq·kg−1·s−1). The Th-232 content was determined using HPGe gamma spectrometry. The Th-232 activity concentration ranged between 9.3 and 161.7 Bq·kg−1 (average: 64.6 Bq·kg−1). The thoron emanation features were also calculated from the obtained results (2.9 to 21.2% with an average of 8.6%). The thoron exhalation and emanation properties were compared with the radon exhalation and emanation features determined in a previous study. It was found that there was no correlation between the radon and thoron emanation features, according to the obtained data. This can be explained by the different Ra-224 and Ra-226 distributions in the soil grains. As a result, the thoron emanation factor cannot be predicted from radon emanation and vice versa.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    World Health Organization. (2009). WHO handbook on indoor radon: a public health perspective. Geneva: WHO Press.

  • 2.

    Meisenberg O. & Tschiersch J. (2012). Specific properties of a model of thoron and its decay products in indoor atmospheres. Nukleonika55(4) 463–469.

  • 3.

    Kardos R. Gregoric A. Jonas J. Vaupotic J. Kovacs T. & Ishimori Y. (2015). Dependence of radon emanation of soil on lithology. J. Radioanal. Nucl. Chem.304 1321–1327. .

    • Crossref
    • Export Citation
  • 4.

    Kovler K. (2011). Legislative aspects of radiation hazards from both gamma emitters and radon exhalation of concrete containing coal fly ash. Constr. Build. Mater.25(8) 3404–3409. .

    • Crossref
    • Export Citation
  • 5.

    Sas Z. Somlai J. Jonas J. Szeiler G. Kovacs T. Gyongyosi Cs. & Sydo T. (2013). Radiological survey of Hungarian clays; radon emanation and exhalation influential effect of sample and internal structure conditions. Rom. J. Phys.58 243–250.

  • 6.

    Sas Z. Somlai J. Szeiler G. & Kovacs T. (2015). Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem.306 271–275. .

    • Crossref
    • Export Citation
  • 7.

    Shiroma Y. Hosoda M. Ishikawa T. Sahoo S. K. Tokonami S. & Furukawa M. (2015). Estimation of radon emanation coefficient for representative soils in Okinawa Japan. Radiat. Prot. Dosim.167(1/3) 147–150. .

    • Crossref
    • Export Citation
  • 8.

    Somlai J. Horvath M. Kanyar B. Lendvai Z. & Nemeth Cs. (1999). Radiation hazard of coal-slags as building material in Tatabanya town (Hungary). Health Phys.75(6) 648–651. .

    • Crossref
    • Export Citation
  • 9.

    Netherlands Standardization Institute. (2001). Dutch Standard: Radioactivity measurement. Determination method of the rate of the radon exhalation of dense building materials. NEN 5699:2001. Netherland Postbus.

  • 10.

    Tokonami S. (2005). Summary of dosimetry (radon and thoron) studies. Int. Congress Series1276(2) 151–154. .

    • Crossref
    • Export Citation
  • 11.

    Zunic Z. S. Fujimoto K. Yarmoshenko I. V. Birovljev A. Celikovic I. Ujic P. Simopoulos S. E. Olko P. Budzanowski M. McLaughlin J. P. & Waligorski M. P. R. (2004). Field investigations on radon thoron and penetrating environmental radiation in selected regions of the western Balkan countries. In 11th International Congress of International Radiation Protection Agency IRPA11 23–28 May 2004 (pp. 23–28). Madrid Spain.

  • 12.

    Ishimori Y. Lange K. Martin P. Mayya Y. S. & Phaneuf M. (2013). Measurement and calculation of radon releases from NORM residues. Vienna: IAEA. (Technical Reports Series no. 474).

  • 13.

    Somlai J. Jobbagy V. Nemeth Cs. Gorjanacz Z. Kavasi N. & Kovacs T. (2006). Radiation dose from coal slag used as building material in the Transdanubian region of Hungary. Radiat. Prot. Dosim.118(1) 82–87. .

    • Crossref
    • Export Citation
  • 14.

    Doi M. Kobayashi S. & Fujimoto K. (1992). A passive measurement technique for characterization of high-risk houses in Japan due to enhanced levels of indoor radon and thoron concentrations. Radiat. Prot. Dosim.45(1/4) 425–430.

  • 15.

    Kudo H. Tokonami S. Omori Y. Ishikawa T. Iwaoka K. Sahoo S. K. Akata N. Hosoda M. Wanabongse P. Pornnumpa C. Sun Q. Li X. & Akiba S. (2015). Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat. Prot. Dosim.167(1/3) 155–159. .

    • Crossref
    • Export Citation
  • 16.

    Mjones L. Falk R. Mellander H. & Nyblom L. (1992). Measurements of thoron and thoron progeny indoors in Sweden. Radiat. Prot. Dosim.45(1/4) 249–352.

  • 17.

    Milic G. Jakupi B. Tokonami S. Trajkovic R. Ishikawa T. Celikovic I. Ujic P. Cuknic O. Yarmoshenko I. Kosanovic K. Adrovic F. Sahoo S. K. Veselinovic N. & Zunic Z. S. (2010). The concentrations and exposure doses of radon and thoron in residences of the rural areas of Kosovo and Metohija. Radiat. Meas.45(1) 118–121. .

    • Crossref
    • Export Citation
  • 18.

    Nuccetelli C. & Bochicchio F. (1998). The thoron issue: monitoring activities measuring techniques and dose conversion factors. Radiat. Prot. Dosim.78(1) 59–64. .

    • Crossref
    • Export Citation
  • 19.

    Szabo Zs. Jordan Gy. Szabo Cs. Horvath A. Holm O. Kocsy G. Csige I. Szabo P. & Homoki Zs. (2014). Radon and thoron levels their spatial and seasonal variations in adobe dwellings – a case study at the great Hungarian plain. Isot. Environ. Health Stud.50(2) 211–225. .

    • Crossref
    • Export Citation
  • 20.

    Zak A. Biernacka M. & Mamont-Ciesla K. (1993). Investigation of radon and thoron from building walls. Nukleonika38(4) 39–50.

  • 21.

    Kochowska E. Kozak K. Kozlowska B. Mazur J. & Dorda J. (2009). Test measurements of thoron concentration using two ionization chambers AlphaGUARD vs. radon monitor RAD7. Nukleonika54(3) 189–192.

  • 22.

    Sun H. & Furbish D. J. (1995). Moisture content effect on radon emanation in porous media. J. Contam. Hydrol.18(3) 239–255. .

    • Crossref
    • Export Citation
  • 23.

    Csige I. Szabo Zs. & Szabo Cs. (2013). Experimental technique to measure thoron generation rate of building material samples using RAD7 detector. Radiat. Meas.59 201–204. .

    • Crossref
    • Export Citation
  • 24.

    Petropoulos N. P. Anagnostakis M. J. & Simopoulos S. E. (2001). Building materials radon exhalation rate: ERRICCA intercomparison exercise results Sci. Tot. Environ.272(1/3) 109–118. .

    • Crossref
    • Export Citation
Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 93 4
PDF Downloads 118 71 1