Distribution of indoor radon concentrations between selected Hungarian thermal baths

Open access


Owing to the high potential of radon to increase the risk of lung cancer, health organizations are enforced to update their regulations and recommendations regarding indoor radon levels each year. In this study, the indoor radon concentrations of three randomly selected thermal baths in Hungary using CR-39 and an AlphaGUARD radon monitor were measured with regard to the new updated standards of the European Basic Safety Standard (EU BSS, Council Directive 2013/59/Euratom, 2014). The annual average of indoor radon concentrations in Parad Medical Bath, Igal Health Spa and Eger Turkish Bath were measured as 159 ± 19, 176 ± 27 and 301 ± 30 Bq/m3, respectively. Indoor radon concentration in all measurement locations were determined to be below the reference level, with the exception of the main pool, small pool and sparkling bath areas in the Eger Turkish Bath that were measured as 403 ± 42, 315 ± 32 and 354 ± 36 Bq/m3, respectively. In light of the results, the estimated annual average radon concentration in the thermal baths was below the EU BSS reference level of 300 Bq/m3. Personal dosimetry is required to estimate the annual effective dose from inhaled radon by the workers at the Eger Turkish Bath. This procedure is required in order to justify the application of the mitigation process of decreasing working hours, improving the ventilation rate or increasing the number of classified employees in response to the official radiation surveillance programme.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    UNSCEAR. (2010). UNSCEAR 2008 Report to the General Assembly with scientific annexes. Vol. 1. New York: UN.

  • 2.

    World Health Organization. (2009). Handbook on indoor radon: A public health perspective. Switzerland: WHO.

  • 3.

    Council of the European Union. (2014). Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. (Official Journal of the European Union L13 1–73). Brussels: O. J. EU.

  • 4.

    International Atomic Energy Agency. (2014). Radiation protection and safety of radiation sources: International basic safety standards. Vienna: IAEA.

  • 5.

    Kávási N. Somlai J. Vigh T. Tokonami S. Ishikawa T. Sorimachi A. & Kovács T. (2009). Difficulties in the dose estimate of workers originated from radon and radon progeny in a manganese mine. Radiat. Meas.44 300–305. .

    • Crossref
    • Export Citation
  • 6.

    Somlai J. Hakl J. Kávási N. Szeiler G. Szabó P. & Kovács T. (2011). Annual average radon concentration in the show caves of Hungary. J. Radioanal. Nucl. Chem.287 427–433. .

    • Crossref
    • Export Citation
  • 7.

    Field M. S. (2007). Risks to cavers and cave workers from exposures to low-level ionizing a radiation from 222Rn decay in caves. J. Cave Karst Stud.69 207–228.

  • 8.

    Somlai J. Torma Á. Dombovári P. Kávási N. Nagy K. & Kovács T. (2007). Contribution of 222Rn 226Ra 234U and 238U radionuclides to the occupational and patient exposure in Heviz-spas in Hungary. J. Radioanal. Nucl. Chem.272 101–106. .

    • Crossref
    • Export Citation
  • 9.

    Nagy K. Kávási N. Kovács T. & Somlai J. (2008). Radon therapy and speleotherapy in Hungary. La Presse Thermale et Climatiqua145 219–225.

  • 10.

    Talha S. A. de Meijer R. J. Lindsay R. Newman R. T. Maleka P. P. & Hlatshwayo I. N. (2010). In-field radon measurement in water: a novel approach. J. Environ. Radioact.101 1024–1031. .

    • Crossref
    • Export Citation
  • 11.

    Kitto M. E. Fielman E. M. Haines D. K. Menia T. A. & Bari A. (2008). Performance of a commercial radon-in-water measurement kit. J. Environ. Radioact.99 1255–1257. .

    • Crossref
    • Export Citation
  • 12.

    Becker K. (2005). Health effects of high radon environments in Central Europe: another test for the LNT hypothesis. Nonlinearity Biol. Toxicol. Med.1 3–25.

  • 13.

    Nagy K. Berhés I. Kovács T. Kávási N. Somlai J. Kovacs L. Barna I. & Bender T. (2009). Study on endocrinological effects of radon speleotherapy on respiratory diseases. Int. J. Radiat. Biol.85 281–290. .

    • Crossref
    • Export Citation
  • 14.

    Igal Health Spa. (2011). Retrieved July 11 2015 from http://www.igal.hu/Gyogyfurdo.

  • 15.

    Wein Gy. (1969). Tectonic review of the neogene-covered areas of Hungary. Acta Geol. Hung.13 399–436.

  • 16.

    Műllerová M. Kozak K. Kovács T. Csordás A. Grzadziel D. Holý K. Mazur J. Moravcsík A. Neznal M. Neznal M. & Smetanová I. (2014). Preliminary results of indoor radon survey in V4 countries. Radiat. Prot. Dosim.160(1/3) 210–213.

  • 17.

    Bátor G. Csordás A. Horváth D. Somlai J. & Kovács T. (2015). A comparison of a track shape analysis-based automated slide scanner system with traditional methods. J. Radioanal. Nucl. Chem.306(1) 333–339.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 330 241 4
PDF Downloads 257 214 1