Imaging of hypoxia in small animals with 18F fluoromisonidasole

Open access

Abstract.

A method of automated synthesis of [18F]fluoromisonidazole ([18F]FMISO) for application in preclinical studies on small animals was presented. A remote-controlled synthesizer Synthra RNplus was used for nucleophilic substitution of NITTP (1′-(2′-nitro-1-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulfonyl-propanediol) with 18F anion. Labeling of 5 mg of precursor was performed in anhydrous acetonitrile at 100°C for 10 min, and the hydrolysis with HCl was performed at 100°C for 5 min. Final purification was done with high-performance liquid chromatography (HPLC) and the radiochemical purity of radiotracer was higher than 99%. Proposed [18F]FMISO synthesis was used as a reliable tool in studies on hypoxia in Lewis lung carcinoma (LLC) in mouse models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bristow R. G. & Hill R. P. (2008). Hypoxia and metabolism: Hypoxia DNA repair and genetic instability. Nat. Rev. Cancer 8 180-192.

  • 2. Zhang J. Cao J. Ma S. Dong R. Meng W. Ying M. Weng Q. Chen Z. Ma J. Fang Q. He Q. & Yang B. (2014). Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 5(20) 9664-9677.

  • 3. Ackerman D. & Simon M. C. (2014). Hypoxia lipids and cancer: surviving the harsh tumor microenvironment. Trends Cell. Biol. 24(8) 472-477.

  • 4. Brown J. M. (2007). Tumor hypoxia in cancer therapy. H. Sies & B. Brune (Eds.) Methods in enzymolology. Vol. 435 (pp. 297-321). Academic Press.

  • 5. Nagelkerke A. Bussink J. Mujcic H. Wouters B. G. Lehmann S. Sweep F. C. G. J. & Span P. N. (2013). Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 15 R2(13pp).

  • 6. Weeks A. J. Paul R. L. Marsden P. K. Blower P. J. & Lloyd D. R. (2010). Radiobiological effects of hypoxia dependent uptake of 64Cu-ATSM: enhanced DNA damage and cytotoxicity in hypoxic cells. Eur. J. Nucl. Med. Mol. Imaging 37 330-338.

  • 7. Mees G. Dierckx R. Vangestel Ch. & Van de Wiele Ch. (2009). Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging 36 1675-1680.

  • 8. Peeters S. G. Zegers C. M. Lieuwes N. G. van Elmpt W. Eriksson J. van Dongen G. A. Dubois L. & Lambin P. (2015). A comparative study of the hypoxia PET tracers [18F]HX4 [18F]FAZA and [18F]FMISO in a preclinical tumor model. Int. J. Radiat. Oncol. Biol. Phys. 1 91(2) 351-359.

  • 9. Lin A. & Hahn S. M. (2012). Hypoxia imaging markers and applications for radiation treatment planning. Semin. Nucl. Med. 42 343-352.

  • 10. Campanile C. Arlt M. J. E. Krämer S. D. Honer M. Gvozdenovic A. Brennecke P. Fischer C. A. Sabile A. A. Müller A. Ametamey S. A. Born W. Schibli R. & Fuchs B. (2013). Characterization of different osteosarcoma phenotypes by PET imaging in preclinical animal models. J. Nucl. Med. 54(8) 1362-1368.

  • 11. Thézé B. Bernards N. Beynel A. Bouet S. Kuhnast B. Buvat I. Tavitian B. & Boisgard R. (2015). Monitoring therapeutic effi cacy of sunitinib using [18F]FDG and [18F]FMISO PET in an immunocompetent model of luminal B (HER2-positive)-type mammary carcinoma. BMC Cancer 15 534(10pp).

  • 12. Arvold N. D. Heidari P. Kunawudhi A. Sequist L. V. & Mahmood U. (2015). Tumor hypoxia response after targeted therapy in EGFR-mutant non-small cell lung cancer. Technol. Cancer Res. Treat. 15(2) 234-242.

  • 13. Bruehlmeier M. Kaser-Hotz B. Achermann R. Rohrer Bley C. Wergin M. Schubiger P. A. & Ametamey S. M. (2005). Measurement of tumor hypoxia in spontaneous canine sarcomas. Vet. Radiol. Ultrasoun. 46(4) 348-354.

  • 14. Kilian K. Chabecki B. Kiec J. Kunka A. Panas B. Wójcik M. & Pekal A. (2014). Synthesis quality control and determination of metallic impurities in 18F-fl udeoxyglucose production process. Rep. Pract. Oncol. Radiother. 19 22-31.

  • 15. Anzellotti A. Bailey J. Ferguson D. McFarland A. Bochev P. Andreev G. Awasthi V. & Brown- -Proctor C. (2015). Automated production and quality testing of [18F]labeled radiotracers using the BG75 system. J. Radioanal. Nucl. Chem. 305(2) 387-401.

  • 16. Blom E. & Koziorowski J. (2014). Automated synthesis of [18F]FMISO on IBA Synthera®. J. Radioanal. Nucl. Chem. 299(1) 265-270.

  • 17. Nandy S. K. & Rajan M. (2010). Fully automated radiosynthesis of [18F]Fluoromisonidazole with single neutral alumina column purifi cation: optimization of reaction parameters. J. Radioanal. Nucl. Chem. 286(1) 241-248.

  • 18. Bowen S. R. van der Kogel A. J. Nordsmark M. Bentzen M. S. & Jeraj R. (2011). Characterization of PET hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl. Med. Biol. 38(6) 771-780.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 237 8
PDF Downloads 102 70 2