Microwave plasma for hydrogen production from liquids

Open access


The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS) operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2)/h] and the energy yield of hydrogen production [NL(H2)/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2)/h and the energy yield was 223 NL(H2) per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kabouzi Y. Moisan M. Rostaing J. C. Trassy C. Guerin D. Kéroack D. & Zakrzewski Z. (2003). Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure. J. Appl. Phys. 93(12) 9483-9496. DOI: 10.1063/1.1574595.

  • 2. Moisan M. & Pelletier J. (1992). Microwave excited plasmas. Amsterdam Holland: Elsevier.

  • 3. Mizeraczyk J. Dors M. Jasiński M. Hrycak B. & Czylkowski D. (2013). Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. Eur. Phys. J. Appl. Phys. 61 24309. DOI: 10.1051/epjap/2012120405.

  • 4. Czylkowski D. Hrycak B. Jasiński M. Dors M. & Mizeraczyk J. (2013). Atmospheric pressure microwave microplasma microorganisms deactivation. Surf. Coat. Technol. 234 114-119. DOI: 10.1016/j. surfcoat.2013.04.010.

  • 5. Chen H. H. Weng C. C. Liao J. D. Chen K. M. & Hsu B. W. (2009). Photo-resist stripping process using atmospheric pressure microplasma system. J. Phys. D-Appl. Phys. 42(13) 1-8. DOI: 10.1088/0022-3727/42/13/135201.

  • 6. Denes F. S. & Manolache S. (2004). Macromolecular plasma-chemistry: an emerging fi eld of polymer science. Prog. Polym. Sci. 29(8) 815-885. DOI: 10.1016/ j.progpolymsci.2004.05.001.

  • 7. Chu P. K. Chen J. Y. Wang L. P. & Huang N. (2002). Plasma-surface modifi cation of biomaterials. Mater. Sci. Eng. R 36(5/6) 143-206. DOI: 10.1016/ S0927-796X(02)00004-9.

  • 8. Morent R. de Geyter N. Verschuren J. de Clerck K. Kiekens P. & Leys C. (2008). Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 202(14) 3427-3449. DOI: 10.1016/j.surfcoat.2007.12.027.

  • 9. Tendero C. Tixier C. Tristant P. Desmaison J. & Leprince P. (2006). Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B 61(1) 02-30. DOI: 10.1016/j.sab.2005.10.003.

  • 10. Jasiński M. Mizeraczyk J. Zakrzewski Z. Ohkubo T. & Chang J. S. (2002). CFC-11 destruction by microwave plasma torch generated atmospheric-pressure nitrogen discharge. J. Phys. D-Appl. Phys. 35(18) 2274-2280. DOI: 10.1088/0022-3727/35/18/308.

  • 11. Baeva M. Gier H. Pott A. Uhlenbusch J. Hoschele J. & Steinwandel J. (2002). Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Sci. Technol. 11(1) 1-9. DOI: 10.1088/0963-0252/11/1/301.

  • 12. Jasiński M. Dors M. & Mizeraczyk J. (2009). Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem. Plasma Process. 29(5) 363-372. DOI: 10.1007/s11090-009-9183-1.

  • 13. Mizeraczyk J. Jasiński M. Nowakowska H. & Dors M. (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika 57(2) 241-247

  • 14. Jasiński M. Czylkowski D. Hrycak B. Dors M. & Mizeraczyk J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. Int. J. Hydrog. Energy 38(26) 11473-11483. DOI: 10.1016/j.ijhydene.2013.05.105.

  • 15. Mizeraczyk J. Urashima K. Jasiński M. & Dors M. (2014). Hydrogen production from gaseous fuels by plasmas - A review. Int. J. Plasma Env. Sci. Technol. 8(2) 89-97.

  • 16. Hrycak B. Czylkowski D. Miotk R. Dors M. Jasiński M. & Mizeraczyk J. (2014). Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. Int. J. Hydrog. Energy 39(26) 14184-14190. DOI: 10.1016/j. ijhydene.2014.02.160.

  • 17. Hrycak B. Czylkowski D. Miotk R. Dors M. Jasinski M. & Mizeraczyk J. (2015). Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure. Open Chem. 13(1) 317-324. DOI: 10.1515/chem-2015-0039.

  • 18. Czylkowski D. Hrycak B. Miotk R. Jasiński M. Dors M. & Mizeraczyk J. (2015). Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas. Int. J. Hydrog. Energy 40(40) 14039-14044. DOI: 10.1016/j. ijhydene.2015.06.101.

  • 19. Randolph K. (2013). Hydrogen production. In Hydrogen and Fuel Cells - Annual Merit Review and Peer Evaluation Meeting May 13-17 2013 Arlington Virginia USA. U.S. Department of Energy (DOE).

  • 20. Bromberg L. Cohn D. R. & Rabinovich A. (1997). Plasma reformer-fuel cell system for decentralized power applications. Int. J. Hydrog. Energy 22(1) 83-94. DOI: 10.1016/0360-3199(95)00121-2.

  • 21. Bromberg L. Cohn D. R. Rabinovich A. Alexeev N. Samokhin A. Ramprasad R. & Tamhankar S. (2000). System optimization and cost analysis of plasma catalytic reforming of natural gas. Int. J. Hydrog. Energy 25(12) 1157-1161. DOI: 10.1016/ S0360-3199(00)00048-3.

  • 22. Sekiguchi H. & Mori Y. (2002). Steam plasma reforming using microwave discharge. Thin Solid Films 435(1/2) 44-48. DOI: 10.1016/S0040-6090(03)00379-1.

  • 23. Liu K. Song Ch. & Subramani V. (2010). Hydrogen and syngas production and purification technologies. Hoboken New Jersey USA: John Wiley & Sons Inc.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 524 332 5
PDF Downloads 259 145 5