Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

Open access


Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM) source profiles were prepared by applying principal component analysis (PCA), factor analysis (FA) and multiple linear regression (MLR). Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Thurston G. D. & Spengler J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in Metropolitan Boston. Atmos. Environ. 19 9–25.

  • 2. Thurston G. D. & Spengler J. D. (1985). A multivariate assessment of meteorological influences on inhalable particle source impacts. J. Clim. Appl. Meteorol.24 1245–1256.

  • 3. Song Y. Xie S. Zhang Y. Zeng L. Salmon L. G. & Zheng M. (2006). Source apportionment of PM2.5 in Beijing using Principal Component Analysis/Absolute Principal Component scores and UNMIX. Sci. Total Environ. 372 278–286. DOI: 10.1016/j.scitotenv.2006.08.041.

  • 4. Samek L. (2012). Source apportionment of PM10 fraction of particulate matter collected in Krakow Poland. Nukleonika57(4) 601–606.

  • 5. Samek L. Gdowik A. Ogarek J. & Furman L. (2016). Elemental composition and rough source apportionment of fine particulate matter in Krakow Poland. Environ. Prot. Eng. (in press).

  • 6. Almeida S. M. Pio C. A. Freitas M. C. Reis M. A. & Trancoso M. A. (2006). Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis principal component analysis and particle size distribution. Sci. Total Environ. 368 663–674. DOI: 10.1016/j.scitotenv.2006.03.031.

  • 7. Pandolfi M. Viana M. Minguillon M. C. Querol X. Alastuey A. Amato F. Celades I. Escrig A. & Monfort E. (2008). Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmos. Environ. 42 9007–9017. DOI: 10.1016/j.atmosenv.2008.09.029.

  • 8. Viana M. Kuhlbusch T. A. J. Querol X. Alastuey A. Harrison R. M. Hopke P. K. Winiwarter W. Vallius M. Szidat S. Prevot A. S. H. Hueglin C. Bloemen H. Wahlin P. Vecchi R. Miranda A. I. Kasper-Giebl A. Maenhaut W. & Hitzenberger R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Aerosol Sci.39 827–849. DOI: 10.1016/j.jaerosci.2008.05.007.

  • 9. Almeida M. Pio C. A. Freitas M. C. Reis M. A. & Trancoso M. A. (2005). Source apportionment of fine and coarse particulate matter in sub-urban area at Western European Coast. Atmos. Environ. 39 3127–3138. DOI: 10.1016/j.atmosenv.2005.01.048.

  • 10. Almeida S. M. Reis M. A. Freitas M. C. & Pio C. A. (2007). Quality assurance in elemental analysis of airborne particles. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms207 434–446. DOI: 10.1016/so168-583x(03)01119-4.

  • 11. Vallius M. Janssen N. A. H. Heinrich J. Hoek G. Ruuskanen J. Cyrys J. Van Grieken R. de Hartog J. J. Kreyling W. G. & Pekkanen J. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Sci. Total Environ. 337 147–162. DOI: 10.1016/j.scitotenv.2004.06.018.

  • 12. Hasheminassab S. Daher N. Ostro B. D. & Siontas C. (2014). Long term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles basin: A focus on emissions reduction from vehicular sources. Environ. Pollut. 193 54–64. DOI: 10.1016/j.envpol.2014.06.012.

  • 13. Callen M. S. Iturmendi A. & Lopez J. M. (2014). Source apportionment of atmospheric PM2.5 bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 195 167–177. DOI: 10.1016/j.envpol.2014.08.025.

  • 14. Paatero P. & Tapper U. (1994). Positive matrix factorization: non negative factor model with optimal utilization of error estimates of data values. Environmetrics5 111–126. DOI: 10.1002/env3170050203.

  • 15. Paatero P. & Hopke P. K. (2003). Discarding or downweighting high noise variables in factor analytic models. Anal. Chim. Acta490 277–289. DOI: 10.1016/S0003-2670(02)01643-4.

  • 16. Kim E. Hopke P. K. & Qin Y. (2005). Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. J. Air Waste Manag. Assoc.55 1190–1199.

  • 17. Hopke P. K. Ito K. Mar T. Christensen W. F. Eatough D. J. Henry R. C. Kim E. Laden F. Lall R. Larson T. V. Liu H. Neas L. Pinto J. Stölzel M. Suh H. Paatero P. & Thurston G. D. (2006). PM source apportionment and health effects: Intercomparison of source apportionment results. J. Expo. Sci. Environ. Epidemiol. 16 275–286. DOI: 10.1038/sj.jea.7500458.

  • 18. PN-EN 12341. (2006). Air quality-determination of the PM10 fraction of suspended particulate matter – reference method and field test procedure to demonstrate reference equivalence of measurement methods. 19. PN-EN 14907. (2006). Ambient air quality-standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particular matter.

  • 20. (accessed 12 August 2015).

  • 21. Vekemans B. Janssens K. Vincze L. Adams F. & Van Espin P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom. 23 278–285.

  • 22. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008.

  • 23. Begun B. A. Hopke P. K. & Zhao W. (2005). Source identification of fine particles in Washington DC by expanded factor analysis modelling. Environ. Sci. Technol. 39 1129–1137. DOI: 10.1021/es049804v.

  • 24. Samek L. Zwozdziak A. & Sowka I. (2013). Chemical characterization and source identification of particulate matter PM10 in a rural and urban site in Poland. EPE39 91–103. DOI: 10.5277/epe130408.

  • 25. Lammel G. Rohrl A. & Schreiber H. (2002). Atmospheric lead and bromine in Germany. Post-abatement levels variabilities and trends. Environ. Sci. Pollut. 9 397–404.

  • 26. Laugh G. C. Schauer J. J. Park J. S. Shafer M. M. Deminter J. T. & Weinstein J. P. (2005). Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 39 826–836. DOI: 10.1021/es048715f.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 206 2
PDF Downloads 142 107 0