Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument

Lech Raczyński 1 , Paweł Moskal 2 , Paweł Kowalski 1 , Wojciech Wiślicki 1 , Tomasz Bednarski 2 , Piotr Białas 2 , Eryk Czerwiński 2 , Aleksander Gajos 2 , Łukasz Kapłon 3 , Andrzej Kochanowski 4 , Grzegorz Korcyl 2 , Jakub Kowal 2 , Tomasz Kozik 2 , Wojciech Krzemień 2 , Ewelina Kubicz 2 , Szymon Niedźwiecki 2 , Marek Pałka 2 , Zbigniew Rudy 2 , Piotr Salabura 2 , Neha Gupta-Sharma 2 , Michał Silarski 2 , Artur Słomski 2 , Jerzy Smyrski 2 , Adam Strzelecki 2 , Anna Wieczorek 3 , Marcin Zieliński 2 , and Natalia Zoń 2
  • 1 Świerk Computing Centre, National Centre for Nuclear Research, 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland
  • 2 Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 S. Łojasiewicza Str., 30-348 Krakow, Poland
  • 3 Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 S. Łojasiewicza Str., 30-348 Krakow, Poland and Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 W. Reymonta Str., 30-059 Krakow, Poland
  • 4 Faculty of Chemistry, Jagiellonian University, 3 R. Ingardena Str., 30-059 Krakow, Poland

Abstract

Nowadays, in positron emission tomography (PET) systems, a time of flight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Humm, J. L., Rosenfeld, A., & Del Guerra, A. (2003). From PET detectors to PET scanners. Eur. J. Nucl. Med. Mol. Imaging, 30(11), 1574–1597.

  • 2. Karp, J. S., Surti, S., Daube-Witherspoon, M. E., & Muehllehner, G. (2008). Benefit of time-of-flight in PET: Experimental and clinical results. J. Nucl. Med., 49(3), 462–470.

  • 3. Conti, M. (2009). State of the art and challenges of time-of-flight PET. Phys. Med., 25, 1–11.

  • 4. Moskal, P., Salabura, P., Silarski, M., Smyrski, J., Zdebik, J., & Zieliński, M. (2011). Novel detector systems for the Positron Emission Tomography. Bio-Algorithms and Med-Systems, 7, 73–78. [arXiv: 1305.5187].

  • 5. Moskal, P., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Niedźwiecki, Sz., Pałka, M., Pawlik, M., Raczyński, L., Rudy, Z., Salabura, P., Gupta-Sharma, N., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wiślicki, W., Zieliński, M., & Zoń, N. (2014). A novel TOF-PET detector based on organic scintillators. Radiother. Oncol., 110, S69–S70.

  • 6. Moskal, P., Niedźwiecki, Sz., Bednarski, T., Czerwiński, E., Kapłon, Ł., Kubicz, E., Moskal, I., Pawlik-Niedźwiecka, M., Sharma, N. G., Silarski, M., Zieliński, M., Zoń, N., Białas, P., Gajos, A., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Pałka, M., Raczyński, L., Rudy, Z., Salabura, P., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., & Wiślicki, W. (2014). Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 764, 317–321. DOI: 10.1016/j.nima.2014.07.052. [arXiv:1407.7395].

  • 7. Pałka, M., Moskal, P., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Niedźwiecki, Sz., Pawlik, M., Raczyński, L., Rudy, Z., Salabura, P., Gupta-Sharma, N., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wiślicki, W., Zieliński, M., & Zoń, N. (2014). A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in Positron Emission Tomography. Bio-Algorithms & Med-Systems, 10, 41–45.

  • 8. Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52, 489–509.

  • 9. Donoho, D. (2006). Compressed sensing. IEEE Trans. Inform. Theory, 52, 1289–1306.

  • 10. Raczyński, L., Kowalski, P., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Molenda, M., Moskal, P., Niedźwiecki, Sz., Pałka, M., Pawlik, M., Rudy, Z., Salabura, P., Gupta-Sharma, N., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wiślicki, W., & Zieliński, M. (2013). Application of compressive sensing theory for the reconstruction of signals in plastic scintillators. Acta Phys. Pol. B-Proc. Suppl., 6(4), 1121–1127.

  • 11. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Gajos, A., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Rudy, Z., Rundel, O., Salabura, P., Gupta-Sharma, N., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Zieliński, M., & Zoń, N. (2015). Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 786, 105–112.

  • 12. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Molenda, M., Moskal, I., Niedźwiecki, Sz., Pałka, M., Pawlik-Niedźwiecka, M., Rudy, Z., Salabura, P., Gupta-Sharma, N., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Zieliński, M., & Zoń, N. (2014). Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 764, 186–192.

OPEN ACCESS

Journal + Issues

Search