SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

Open access


Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes). Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bourg S. Hill C. Caravaca C. Rhodes C. Ekberg C. Taylor R. Geist A. Modolo G. Cassayre L. Malmbeck R. Harrison M. de Angelis G. Espartero A. Bouvet S. & Ouvrier N. (2011). ACSEPT - Partitioning technologies and actinide science: Towards pilot facilities in Europe. Nucl. Eng. Des. 241 3427-3435. DOI: 10.1016/j.nucengdes.2011.03.011.

  • 2. Salvatores M. & Palmiotti G. (2011). Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog. Part. Nucl. Phys. 66 144-166.

  • 3. SACSESS report summary

  • 4. Modolo G. Wilden A. Geist A. Magnusson D. & Malmbeck R. (2012). A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim. Acta 100 715-725. DOI: 10.1524/ract.2012.1962.

  • 5. Wilden A. Modolo G. Schreinemachers C. Sadowski F. Lange S. Sypula M. Magnusson D. Geist A. Lewis F. W. Harwood L. M. & Hudson M. J. (2013). Direct selective extraction of actinides(III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Part III: Demonstration of a laboratory-scale counter-current centrifugal contactor process. Solvent Extr. Ion Exch. 31 519-537. DOI: 10.1080/07366299.2013.775890.

  • 6. Modolo G. Asp H. Schreinemachers C. & Vijgen H. (2007). Development of a TODGA based process for partitioning of actinides from a PUREX raffinate. Part I: Batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch. 25 703-721. DOI: 10.1080/07366290701634578.

  • 7. Wilden A. Modolo G. Kaufholz P. Sadowski F. Lange S. Sypula M. Magnusson D. Muellich U. Geist A. & Bosbach D. (2015). Laboratory-scale counter-current centrifugal contactor demonstration of an innovative-SANEX process using a water soluble BTP. Solvent Extr. Ion Exch. 33 91-108. DOI: 10.1080/07366299.2014.952532.

  • 8. Carrott M. Geist A. Hérès X. Lange S. Malmbeck R. Miguirditchian M. Modolo G. Wilden A. & Taylor R. (2015). Distribution of plutonium americium and interfering fi ssion products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene and implications for the design of the “EURO-GANEX” process. Hydrometallurgy 152 139-148.

  • 9. Poinssot C. Rostaing C. Baron P. Warin D. & Boullis B. (2012). Main results of the French program on partitioning of minor actinides a signifi cant improvement towards nuclear waste reduction. Procedia Chem. 7 358-366. DOI: 10.1016/j. proche.2012.10.056.

  • 10. Rostaing C. Poinssot C. Warin D. Baron P. & Lorrain B. (2012). Development and validation of the EXAm separation process for single Am recycling. Procedia Chem. 7 367-373.

  • 11. Modolo G. Kluxen P. & Geist A. (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III) californium(III) and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim. Acta 98 193-201. DOI: 10.1524/ract.2010.1708.

  • 12. Bollesteros M. -J. Calor J. -N. Costenoble S. Montuir M. Pacary V. Sorel C. Burdet F. Espinoux D. Hérès X. & Eysseric C. (2012). Implementation of americium separation from a PUREX raffinate. Procedia Chem. 7 178-183.

  • 13. Chapron S. Marie C. Arrachart G. Miguirditchian M. & Pellet-Rostaing S. (2015). New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr. Ion Exch. 33(3) 236-248.

  • 14. Narbutt J. Wodyński A. & Pecul M. (2015). The selectivity of diglycolamide (TODGA) and bis-triazine--bipyridine (BTBP) ligands in actinide/ lanthanide complexation and solvent extraction separation - a theoretical approach. Dalton Trans. 44(6) 2657-2666. DOI: 10.1039/c4dt02657h.

  • 15. Bryantsev V. S. & Hay B. P. (2015). Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton Trans. 44(17) 7935-7942. DOI: 10.1039/c4dt03275f.

  • 16. Mincher B. J. Elias G. Martin L. R. & Mezyk S. P. (2009). Radiation chemistry and the nuclear fuel cycle. J. Radioanal. Nucl. Chem. 282 645-649.

  • 17. Inoue T. (2002). Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system. Prog. Nucl. Energy 40 547-554.

  • 18. Koyama T. Sakamura Y. Iizuka M. Kato T. Murakami T. & Glatz J. -P. (2012). Development of pyro-processing fuel-cycle technology for closing actinide cycle. Procedia Chem. 7 772-778.

  • 19. Soucek P. Malmbeck R. Nourry C. & Glatz J. -P. (2011). Pyrochemical reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes. Energy Procedia 7 396-404.

  • 20. Chmielewski A. G. (2008). Nuclear fi ssile fuels worldwide reserves. Nukleonika 53(Suppl. 2) S11-S14.

  • 21.

  • 22.

  • 23.

  • 24. John J. Lehto J. Koivula T. & Omtvedt J. P. (2015). Cooperation in education and training in nuclear- and radiochemistry in Europe. J. Radioanal. Nucl. Chem. 304 459-466.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 354 238 4
PDF Downloads 127 89 4