Principles of positron porosimetry

Open access

Abstract

The paper deals with positron porosimetry (PP), which is based on positron annihilation lifetime spectroscopy (PALS). The numerical analysis of positron lifetime spectra for PP is more demanding than in most of other applications of PALS. The resulting intensity distributions of ortho-positronium (o-Ps) lifetimes are interpreted in terms of the extended Tao-Eldrup (ETE) model, which provides the dependence between the o-Ps lifetime and pore size. Additionally, the relation between the intensity of an o-Ps component and the pore volume allows obtaining pore size distribution (PSD). The value of the empirical parameter Δ, which is dependent on material, can be estimated from the temperature dependence of an o-Ps lifetime. The most unique feature of PP among other techniques that allow determination of PSDs is its ability to perform measurements in almost any conditions. This makes this method suitable for various in situ studies. In this review article, both the capabilities and the limitations of PP are discussed. The methods to overcome some of the limitations are presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Hatton B. D. Landskron K. Hunks W. J. Bennett M. R. Shukaris D. Perovic D. D. & Ozin G. A. (2006). Materials chemistry for low-k materials. Mater. Today9(3) 22–31. DOI: 10.1016/S1369-7021(06)71387-6.

  • 2. Taguchi A. & Schüth F. (2005). Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77(1) 1–45. DOI: 10.1016/j.micromeso.2004.06.030.

  • 3. Slowing I. I. Vivero-Escoto J. L. Wu C. -W. & Lin V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. 60(11) 1278–1288. DOI: 10.1016/j.addr.2008.03.012.

  • 4. Chang F. Zhou J. Chen P. Chen Y. Jia H. Saad S. M. I. Gao Y. Cao X. & Zheng T. (2013). Microporous and mesoporous materials for gas storage and separation: a review. Asia-Pac. J. Chem. Eng. 8(4) 618–626. DOI: 10.1002/apj.1717.

  • 5. Maretto M. Blanchi F. Vignola R. Canepari S. Baric M. Iazzoni R. Tagliabue M. & Papini M. P. (2014). Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities. J. Clean. Prod.77 22–34. DOI: 10.1016/j.jclepro.2013.12.070.

  • 6. Gidley D. W. Frieze W. E. Dull T. L. Sun J. Yee A. F. Nguyen C. V. & Yoon D. Y. (2000). Determination of pore-size distribution in low-dielectric thin films. Appl. Phys. Lett. 76(10) 1282–1284. DOI: 10.1063/1.126009.

  • 7. Goworek J. Zaleski R. Borówka A. Kusak R. & Kierys A. (2009). Pore structure and morphology of mesoporous silicate and aluminosilicate molecular sieves by nitrogen adsorption AFM and PALS. In S. Kaskel P. Llewellyn F. Rodriguez-Reinoso & N. A. Seaton (Eds.) Characterisation of porous solids VIII: Proceedings of the 8th International Symposium on the Characterisation of Porous Solids (pp. 303–310). The Royal Society of Chemistry.

  • 8. Kullmann J. Enke D. Thraenert S. Krause-Rehberg R. & Inayat A. (2010). Characterization of nanoporous monoliths using nitrogen adsorption and positronium annihilation lifetime spectroscopy. Colloids Surf. A357(1/3) 17–20. DOI: 10.1016/j.colsurfa.2009.09.030.

  • 9. Zaleski R. Stefaniak W. Maciejewska M. & Goworek J. (2009). Porosity of polymer materials by various techniques. J. Porous Mat. 16(6) 691–698. DOI: 10.1007/s10934-008-9250-7.

  • 10. Zaleski R. Kierys A. Grochowicz M. Dziadosz M. & Goworek J. (2011). Synthesis and characterization of nanostructural polymer-silica composite: Positron annihilation lifetime spectroscopy study. J. Colloid Interf. Sci. 358(1) 268–276. DOI: 10.1016/j.jcis.2011.03.008.

  • 11. Kilburn D. Sokol P. E. Sakai V. G. & Alam M. A. (2008). Confinement induces both higher free volume and lower molecular mobility in glycerol. Appl. Phys. Lett. 92(3) 033109. DOI: 10.1063/1.2835903.

  • 12. Iskrová M. Majerník V. Illeková E. Šauša O. Berek D. & Krištiak J. (2009). Free volume seen by positronium in bulk and confined molecular liquid. Mater. Sci. Forum607 235–237. DOI: 10.4028/www.scientific.net/MSF.607.235.

  • 13. Zaleski R. & Goworek J. (2009) n-Nonadecane embedded in mesopores. Mater. Sci. Forum607 180–182. DOI: 10.4028/www.scientific.net/MSF.607.180.

  • 14. Kullmann J. Enke D. Thraenert S. Krause-Rehberg R. & Beiner M. (2012). Characterization of pore filling of mesoporous host systems by means of positronium annihilation lifetime spectroscopy (PALS). Opt. Appl. 42(2) 281–286. DOI: 10.5277/oa120205.

  • 15. Zaleski R. Stefaniak W. Maciejew ska M. & Goworek J. (2010). Porosity evolution of VP-DVB/MCM-41 nanocomposite. J. Colloid Interf. Sci. 343(1) 134–140. DOI: 10.1016/j.jcis.2009.11.019.

  • 16. Zaleski R. Dolecki W. Kierys A. & Goworek J. (2012). n-Heptane adsorption and desorption on porous silica observed by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater. 154 142–147. DOI: 10.1016/j.micromeso.2011.08.032.

  • 17. Zaleski R. & Wawryszczuk J. (2008). Positron porosimetry studies of template removal from as-synthesized MCM-41 silica. Acta Phys. Pol. A113(5) 1543–1550.

  • 18. Zaleski R. Goworek J. & Borówka A. (2007). Positronium annihilation study of as-synthesized MCM-41 silica under pressure. In P. L. Llewellyn F. Rodriquez-Reinoso J. Rouqerol & N. Seaton (Eds.) Characterization of porous solids VII. (Studies in Surface Science and Catalysis Vol. 160 pp. 471–478). Elsevier.

  • 19. Zaleski R. Maciejewska M. & Puzio M. (2015). Mechanical stability of porous copolymers by positron annihilation lifetime spectroscopy. J. Phys. Chem. C119(21) 11636–11645. DOI: 10.1021/acs.jpcc.5b01722.

  • 20. Zaleski R. Kierys A. Dziadosz M. Goworek J. & Halasz I. (2012). Positron annihilation and N2-adsorption for nanopore determination in silica-polymer composites. RSC Adv.2(9) 3729–3734. DOI: 10.1039/C2RA20147J.

  • 21. Shukla A. Peter M. & Hoffmann L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip.335(1/2) 310–317. DOI: 10.1016/0168-9002(93)90286-Q.

  • 22. Zaleski R. (2006). Measurement and analysis of the positron annihilation lifetime spectra for mesoporous silica. Acta Phys. Pol. A110(5) 729–738.

  • 23. Kansy J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip.374(2) 235–244. DOI: 10.1016/0168-9002(96)00075-7.

  • 24. Tao S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys. 56(11) 5499–5510. DOI: 10.1063/1.1677067.

  • 25. Eldrup M. Lightbody D. & Sherwood J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63(1/2) 51–58. DOI: 10.1016/0301-0104(81)80307-2.

  • 26. Nakanishi H. Wang S. J. & Jean Y. C. (1988). Microscopic surface tension studies by positron annihilation. In S. C. Sharma (Ed.) Proceedings of the International Symposium on Positron Annihilation Studies of Fluids (pp. 292–298). Singapore: World Scientific.

  • 27. Ciesielski K. Dawidowicz A. L. Goworek T. Jasińska B. & Wawryszczuk J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett. 289(1/2) 41–45. DOI: 10.1016/S0009-2614(98)00416-3.

  • 28. Dull T. L. Frieze W. E. Gidley D. W. Sun J. N. & Yee A. F. (2001). Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J. Phys. Chem. B105(20) 4657–4662. DOI: 10.1021/jp004182v.

  • 29. Zaleski R. EELViS. http://sourceforge.net/projects/eelvis/ Accessed: February 20 2015.

  • 30. Thränert S. Enke D. Dlubek G. & Krause-Rehberg R. (2009). Positron lifetime spectroscopy on controlled pore glass porosimetry and pore size distribution. Mater. Sci. Forum607 169–172. DOI: 10.4028/0-87849-348-4.169.

  • 31. Zaleski R. Wawryszczuk J. & Goworek T. (2007). Pick-off models in the studies of mesoporous silica MCM-41. Comparison of various methods of the PAL spectra analysis. Radiat. Phys. Chem. 76(2) 243–247. DOI: 10.1016/j.radphyschem.2006.03.044.

  • 32. Goworek T. Ciesielski K. Jasinska B. & Wawryszczuk J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett. 272(1/2) 91–95. DOI: 10.1016/S0009-2614(97)00504-6.

  • 33. Jasińska B. & Dawidowicz A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem. 68(3/4) 531–534. DOI: 10.1016/S0969-806X(03)00224-X.

  • 34. Śniegocka M. Jasińska B. Wawryszczuk J. Zaleski R. Deryło-Marczewska A. & Skrzypek I. (2005). Testing the extended Tao-Eldrup model. Silica gels produced with polymer template. Acta Phys. Pol. A107 868–873.

  • 35. Dlubek G. Sen Gupta A. Pionteck J. Hassler R. Krause-Rehberg R. Kaspar H. & Lochhaas K. H. (2005). Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study. Polymer46(16) 607–6089. DOI: 10.1016/j.polymer.2005.04.090.

  • 36. Zaleski R. Goworek J. & Maciejewska M. (2009). Positronium lifetime in porous VP-DVB copolymer. Phys. Status Solidi C6(11) 2445–2447. DOI: 10.1002/pssc.200982075.

  • 37. Goworek T. Jasinska B. Wawryszczuk J. Zaleski R. & Suzuki T. (2002). On possible deviations of experimental PALS data from positronium pick-off model estimates. Chem. Phys. 280(3) 295–307. DOI: 10.1016/S0301-0104(02)00491-3.

  • 38. Gorgol M. Tydda M. Kierys A. & Zaleski R. (2012). Composition of pore surface investigated by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater. 163 276–281. DOI: 10.1016/j.micromeso.2012.07.029.

  • 39. Gorgol M. Zaleski R. & Kierys A. (2013). Gas filling of SBA-15 silica micropores probed by positron annihilation lifetime spectroscopy (PALS). Nukleonika58(1) 227–231.

  • 40. Zaleski R. & Sokół M. (2011). Influence of atmospheric gases present in the pores of MCM-41 on lifetime of ortho-positronium. Mater. Sci. Forum666 123–128. DOI: 10.4028/www.scientific.net/MSF.666.123.

  • 41. Zaleski R. Błażewicz A. & Kierys A. (2013). Ortho-positronium migration in mesopores of MCM-41 MSF and SBA-3. Nukleonika58(1) 233–238.

  • 42. Thraenert S. Hassan E. M. Enke D. Fuerst D. Krause-Rehberg R. (2007). Verifying the RTE model: ortho-positronium lifetime measurement on controlled pore glasses. Phys. Status Solidi C4(10) 3819–3822. DOI: 10.1002/pssc.200675738.

  • 43. Jasińska B. Zaleski R. Śniegocka M. Reisfeld R. & Zigansky E. (2007). Testing ETE model temperature dependences of PALS data. Phys. Status Solidi C4(10) 3985–3988. DOI: 10.1002/pssc.200675809.

  • 44. Śniegocka M. Jasińska B. Goworek T. & Zaleski R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett. 430(4/6) 351–354. DOI: 10.1016/j.cplett.2006.09.001.

  • 45. Fischer C. G. Weber M. H. Wang C. L. McNeil S. P. & Lynn K. G. (2005). Positronium in low temperature mesoporous films. Phys. Rev. B71(18) 180102. DOI: 10.1103/PhysRevB.71.180102.

  • 46. Zaleski R. (2013). Ortho-positronium localization in pores of Vycor glass at low temperature. J. Phys. Conf. Ser.443(1) 012062. DOI: 10.1088/1742-6596/443/1/012062.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 97 4
PDF Downloads 111 65 4