Toward a European Network of Positron Laboratories

Open access

Abstract

Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB) method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Dupasquier A. Mills Jr A. P. & Brusa R. (Eds.). (2010). Physics with many positrons. 174th Proceedings of the International School of Physics “Enrico Fermi”. Amsterdam: IOS Press.

  • 2. Brusa R. S. Macchi C. Mariazzi S. Karwasz G. P. Scarel G. & Fanciulli M. (2007). Innovative dielectrics for semiconductor technology. Radiat. Phys. Chem. 76(2) 189–194. DOI: 10.1016/j.radphyschem.2006.03.033.

  • 3. Karwasz G. P. Zecca A. Brusa R. S. & Pliszka D. (2004). Application of positron annihilation techniques for semiconductor studies. J. Alloy. Compd. 382(1/2) 244–251. DOI: 10.1016/j.jallcom.2004.05.037.

  • 4. Dupasquier A. Kögel G. & Somoza A. (2004). Studies of light alloys by positron annihilation techniques. Acta Mater. 52 4707. DOI: 10.1016/j.actamat.2004.07.004.

  • 5. Goworek T. Zaleski R. & Wawryszczuk J. (2004). Observation of intramolecular defects in n-alkanes C25H52-C29H60 by the positron annihilation method. Chem. Phys. Lett. 394 90–92. DOI: 10.1016/j.cplett.2004.06.116

  • 6. Śniegocka M. Jasińska B. Goworek T. & Zaleski R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett.430 351–354. DOI: 10.1016/j.cplett.2006.09.001.

  • 7. Hakala M. Puska M. J. & Nieminen R. M. (1998). Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si. Phys. Rev. B57 7621. DOI: 10.1103/PhysRevB.57.7621.

  • 8. Brusa R. S. Deng W. Karwasz G. P. & Zecca A. (2002). Doppler-broadening measurements of positron annihilation with high-momentum electrons in pure metals. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms194 519–531. DOI: 10.1016/S0168-583X(02)00953-9.

  • 9. Karbowski A. Fidelus J. & Karwasz G. (2011). Testing an Ortec Lifetime System. Mater. Sci. Forum666 155–159. DOI: 10.4028/www.scientific.net/MSF.666.155.

  • 10. Karbowski A. Fisz J. J. Karwasz G. P. Kansy J. & Brusa R. S. (2008). Genetic algorithms for positron lifetime data. Acta Phys. Pol. A113 1365–1372.

  • 11. Brusa R. Deng W. Karwasz G. P. Zecca A. & Pliszka D. (2001). Positron annihilation study of vacancy-like defects related to oxygen precipitates in Czochralski-type Si. Appl. Phys. Lett. 79 1492. DOI: 10.1063/1.1401782.

  • 12. Saarinen K. Nissilä J. Kauppinen H. Hakala M. Puska M. J. Hautojärvi P. & Corbel C. (1999). Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett. 82 1883–1886. DOI: 10.1103/PhysRevLett.82.1883.

  • 13. Coleman P. G. (Ed.). (2000) Positron beams and their applications. Singapore: World Scientific.

  • 14. Brusa R. S. Karwasz G. P. Bettonte M. & Zecca A. (1997). A high performance electrostatic positron beam. Appl. Surf. Sci. 116 59–62. DOI: 10.1016/S0169-4332(96)01028-8.

  • 15. Zecca A. Bettonte M. Paridaens J. Karwasz G. P. & Brusa R. S. (1998). A new electrostatic positron beam for surface studies. Meas. Sci. Technol. 9 409–416. DOI: 10.1088/0957-0233/9/3/014.

  • 16. Zecca A. Brusa R. S. Duarte-Naia M. Karwasz G. P. Paridaens J. Piazza A. Kögel G. Sperr P. Britton D. T. Uhlmann K. Willutzki P. & Triftshauser W. (1995) A pulsed positron microbeam. Europhys. Lett. 29 617–622. DOI: 10.1209/0295-5075/29/8/005.

  • 17. Hamada E. Oshima N. Suzuki T. Kobayashi H. Kondo K. Kanazawa I. & Ito Y. (2000). New system for a pulsed slow-positron beam using a radioisotope. Radiat. Phys. Chem. 58 771–775. DOI: 10.1016/S0969-806X(00)00257-7.

  • 18. Hugenschmidt C. Piochacz C. Reiner M. & Schrekkenbach K. (2012). The NEPOMUC upgrade and advanced positron beam experiments. New J. Phys. 14 055027. DOI: 10.1088/1367-2630/14/5/055027.

  • 19. Oshima N. Suzuki R. Ohdaira R. Kinomura A. Narumi T. Uedono A. & Fujinami M. (2008). Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator. J. Appl. Phys. 103 094916. DOI: 10.1063/1.2919783.

  • 20. Brusa R. S. Macchi C. Mariazzi S. Karwasz G. P. Laidani N. Bartali R. & Anderle M. (2005). Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate. Appl. Phys. Lett. 86 221906. DOI: 10.1063/1.1940738.

  • 21. Ferragut R. Calloni A. Dupasquier A. Consolati G. Quasso F. Giammarchi M. G. Trezzi D. Egger W. Ravelli L. Petkov M. P. Jones S. M. Wang B. Yaghi O. M. Jasińska B. Chiodini N. & Paleari A. (2010). Positronium formation in porous materials for antihydrogen production. J. Phys. Conf. Ser. 225 012007. DOI: 10.1088/1742-6596/225/1/012007.

  • 22. Consolati G. (2002). Positronium trapping in small voids: Influence of their shape on positron annihilation results. J. Chem. Phys. 117 7279. DOI: 10.1063/1.1507578.

  • 23. Jasińska B. & Dawidowicz A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem. 68(3/4) 531–534. DOI: 10.1016/S0969-806X(03)00224-X.

  • 24. Jasińska B. Dawidowicz A. L. Goworek T. & Wawryszczuk J. (2003). Pore size determination by positron annihilation lifetime spectroscopy. Opt. Appl.33(1) 7–12.

  • 25. Gorgol M. Jasińska B. & Reisfeld R. (2015). PALS investigations of matrix Vycor glass and doped by molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model. Nukleonika60(4) 717–720.

  • 26. Macchi C. Mariotto G. Karwasz G. P. Zecca A. Bettonte M. & Brusa R. S. (2004). Depth profiled porosity and micro-structure evolution studied by Positron Annihilation and Raman spectroscopy in SiOCH low-κ films. Mater. Sci. Semicond. Proc. 7 289–294. DOI: 10.1016/j.mssp.2004.09.093.

  • 27. Brusa R. S. Spagolla M. Karwasz G. P. Zecca A. Ottaviani G. Corni F. & Carollo E. (2004). Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy. J. Appl. Phys.95 2348–2354. DOI: 10.1063/1.1644925.

  • 28. Brusa R. S. Karwasz G. P. Tiengo N. Zecca A. Corni F. Tonini R. & Ottaviani G. (2000). Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy. Phys. Rev. B61 10154–10166. DOI: 10.1103/PhysRevB.61.10154.

  • 29. Brusa R. S. Macchi C. Mariazzi S. Karwasz G. P. Egger W. Sperr P. & Kögel G. (2006). Decoration of buried surfaces in Si detected by positron annihilation spectroscopy. Appl. Phys. Lett. 88 011920. DOI: 10.1063/1.2162691.

  • 30. Song M. -Y. Yoon J. -S. Cho H. Itikawa Y. Karwasz G. P. Kokoouline V. Nakamura Y. & Tennyson J. (2015). Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data44 023101. DOI: 10.1063/1.4918630.

  • 31. Yu-Wei You Dongdong Li Xiang-Shan Kong Xuebang Wu Liu C. S. Fang Q. F. Pan B. C. Chen J. L. & Luo G. -N. (2014). Clustering of H and He and their effects on vacancy evolution in tungsten in a fusion environment. Nucl. Fusion54 103007. DOI: 10.1088/0029-5515/54/10/103007.

  • 32. Ogorodnikova O. V. Schwarz-Selinger T. Sugiyama K. & Alimov V. Kh. (2011). Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas. J. Appl. Phys. 109 013309. DOI: 10.1063/1.3505754.

  • 33. Tyburska-Püschel B. Alimov V. Kh ’t Hoen M. H. J. Zgardzinska B. Dorner J. & Hatano Y. (2013). Deuterium retention in tungsten damaged with MeV-range W ions at various temperatures and then exposed to D2 gas. In 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications May 13–17 2013. Forschungszentrum Juelich Germany. http://www.fz-juelich.de/conferences/PFMC-14/EN/_SharedDocs/Downloads/EN/pfmc14_book_of_abstracts.html?nn=1264182.

  • 34. Ogorodnikova O. V. & Sugiyama K. (2013). Effect of radiation-induced damage on deuterium retention in tungsten tungsten coatings and Eurofer. J. Nucl. Mater.442 518–527. DOI: 10.1016/j.jnucmat.2013.07.024.

  • 35. Ogorodnikova O. V. & Gann V. (2015). Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions. J. Nucl. Mater.460 60–71. DOI: 10.1016/j.jnucmat.2015.02.004.

  • 36. Ogorodnikova O. V. Sugiyama K. Barthe M. -F. Sibid M. Ciupiński Ł. & Płociński T. (2013). Saturation of deuterium trapping at radiation-induced damage in self-ion irradiated tungsten. In 16th International Conference on Fusion Reactor Materials (ICFRM-16) Beijing China. http://edoc.mpg.de/634511.

  • 37. Egger W. (2010). Pulsed low-energy positron beams in materials sciences. In R. S. Brusa A. Dupasquier & A. P. Mills Jr. (Eds.) Physics with many positrons (pp. 419–449). Amsterdam: North-Holland Publ. Co.

  • 38. Hugenschmidt C. (2010). Positron sources and positron beams. In R. S. Brusa A. Dupasquier & A. P. Mills Jr. (Eds.) Physics with many positrons (pp. 399–417). Amsterdam: North-Holland Publ. Co.

  • 39. Brandt W. Berko S. & Walker W. W. (1960). Positronium decay in molecular substances. Phys. Rev. 120 1289–1295.

  • 40. Uhlmann K. Triftshäuser W. Kögel G. Sperr P. Britton D. T. Zecca A. Brusa R. S. & Karwasz G. P. (1995). A concept of a scanning positron microscope. Fresenius J. Anal. Chem. 353 594–597. DOI: 10.1007/BF00321331.

  • 41. Zecca A. & Karwasz G. (2001). Positrons go into detail. Phys. World 11 21.

  • 42. Kögel G. Egger W. Rödling S. & Gudladt H. J. (2004). Investigation of fatigue cracks in an Al-based alloy by means of pulsed positron (micro)beams. Mater. Sci. Forum445/446126–128. DOI: 10.4028/www.scientific.net/MSF.445-446.126.

  • 43. Uedono A. Kurihara K. Yoshihara N. Nagao S. & Ishibashi S. (2015). Vacancies in InxGa1−xN/GaN multiple quantum wells fabricated on m-plane GaN probed by a monoenergetic positron beam. Appl. Phys. Express 8 051002. DOI: 10.7567/APEX.8.051002.

  • 44. Makochekanwa C. Machacek J. R. Jones A. C. L. Caradonna P. Slaughter D. S. McEachran R. P. Sullivan J. P. Buckman S. J. Bellm S. M. Lohmann B. Fursa D. V. Bray I. Mueller D. W. Stauffer A. D. & Hoshino M. (2011). Low-energy positron interactions with krypton. Phys. Rev. A83 032721. DOI: 10.1103/PhysRevA.83.032721.

  • 45. Pelli A. Laakso A. Rytsölä K. & Saarinen K. (2006). The design of the main accelerator for a pulsed positron beam. Appl. Surf. Sci. 252 3143–3147. DOI: 10.1016/j.apsusc.2005.08.054.

  • 46. Wagner A. Anwand W. Butterling M. Cowan T. E. Fiedler F. Fritz F. Kempe M. & Krause-Rehberg R. (2015). Positron-annihilation lifetime spectroscopy using electron Bremsstrahlung. J. Phys. Conf. Ser. 618 012042. DOI: 10.1088/1742-6596/618/1/012042.

  • 47. Köver A. Williams A. I. Murtag D. J. Fayer S. E. & Laricchia G. (2014). An electrostatic brightness-enhanced timed positron beam for atomic collision experiments. Meas. Sci. Technol. 25 075013. DOI: 10.1088/0957-0233/25/7/075013.

  • 48. Schut H. Van Veen A. de Roode J. & Labohm F. (2004). Long term performance of the reactor based positron beam POSH. Mater. Sci. Forum445/446 507–509.

  • 49. Desgardin P. Liszkay L. Barthe M. F. Henry L. Briaud J. Saillard M. Lepolotec L. Corbel C. Blondiaux G. Colder A. Marie P. & Levalois M. (2001). Slow positron beam facility in Orleans. Mater. Sci. Forum 363 523–525.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 97 11
PDF Downloads 74 53 5