Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

Open access


To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Silk E. C. H. & Barnes R. S. (1959). Examination of fission fragment tracks with an electron microscope. Philos. Mag. 4 970-972.

  • 2. Cartwright B. G. Shirk E. K. & Price P. B. (1978). A nuclear track recording polymer of unique sensitivity and resolution. Nucl. Instrum. Methods 153 457-460.

  • 3. Durrani S. A. & Bull R. K. (1987). Solid state nuclear track detection. New York: Pergamon Press.

  • 4. Malinowska A. Szydłowski A. Sadowski M. J. Żebrowski J. Scholz M. Paduch M. Jaskóła M. & Korman A. (2008). Measurements of fusion-produced protons by means of SSNTDs. Radiat. Meas. 43 S295-S299.

  • 5. Sinenian N. Rosenberg M. J. Manuel M. McDuffee S. C. Casey D. T. Zylstra A. B. Rinderknecht H. G. Gatu Johnson M. Séguin F. H. Frenje J. A. Li C. K. & Petrasso R. D. (2011). The response of CR-39 nuclear track detector to 1-9 MeV protons. Rev. Sci. Instrum. 82 103303.

  • 6. Szydłowski A. Malinowska A. Sadowski M. J. Jaskóła M. Korman A. Wan Wassenhove G. Bonheure G. Schweer B. and TEXTOR Team Gałkowski A. & Małek K. (2008). Measurement of fusion-reaction protons in TEXTOR tokamak plasma by means of solid-state nuclear track detectors of the CR-39/PM-355 type. Radiat. Meas. 43 S290-S294.

  • 7. Szydłowski A. Badziak J. Fuchs J. Kubkowska M. Parys P. Rosiński M. Suchańska R. Wołowski J. Antici P. & Mancic A. (2009). Application of solid-state nuclear track detectors of the CR-39/ PM-355 type for measurements of energetic protons emitted from plasma produced by an ultra-intense laser. Radiat. Meas. 44 881-885.

  • 8. England J. B. A. (1974). Techniques in nuclear structure. New York: Wiley-Macmillan Press.

  • 9. Lück H. B. (1974). Energy spectrometry of protons by means of a dielectric track detector. Nucl. Instrum. Methods 119 403-404.

  • 10. Lück H. B. (1975). Investigations on energy resolution in detecting alpha particles using a cellulose nitrate detector. Nucl. Instrum. Methods 124 359-363.

  • 11. Fews A. P. (1992). Fully automated image analysis of etched tracks in CR-39. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 71 465-478.

  • 12. Fews A. P. (1992). Flexible analysis of etched nuclear particle tracks. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 72 91-103.

  • 13. Santos N. F. Iunes P. J. Paulo S. R. Guedes S. & Hadler J. C. (2010). CR-39 alpha particle spectrometry for the separation of the radon decay product 214Po from the thoron decay product 212Po. Radiat. Meas. 45 823-826.

  • 14. Immè G. Morelli D. Aranzulla M. Catalano R. & Mangano G. (2013). Nuclear track detector characterization for alpha-particle spectroscopy. Radiat. Meas. 50 253-257.

  • 15. Catalog Page Pershore Moulding Company. (1998).

  • 16. Szydłowski A. Banaszak A. Czyżewski T. Fijał I. Jaskóła M. Korman A. Sadowski M. & Kretschmer W. (2001). Advantage of PM-355 nuclear track detector in light-ion registration and high temperature plasma diagnostics. Radiat. Meas. 34(1/6) 325-329.

  • 17. Szydłowski A. Sartowska B. Banaszak A. Choiński J. Fijał I. Jaskóła M. Korman A. & Sadowski M. J. (2005). Calibration of PM-355 nuclear track detectors comparison of track diameter diagrams with track depth characteristics. Radiat. Meas. 40 401-405.

  • 18. Malinowska A. Szydłowski A. Jaskóła M. Korman A. Malinowski K. & Kuk M. (2012). Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 281 56-60.

  • 19. Malinowska A. Szydłowski A. Jaskóła M. Korman A. Sartowska B. Kuehn T. & Kuk M. (2013). Influence of high temperature on solid state nuclear track detector parameters. Rev. Sci. Instrum. 84 073517-073521.

  • 20. Szydłowski A. Malinowska A. Jaskóła M. Korman A. Malinowski K. & Kuk M. (2013). Calibration studies of the application of nuclear track detectors to the detection of charged particles. Radiat. Meas. 50 258-262.

  • 21. Malinowska A. Szydłowski A. Jaskóła M. Korman A. Żebrowski J. Sartowska B. Sadowski M. J. & Badziak J. (2008). Calibration and application of modern track detectors CR-39/PM355 in nuclear physics and high temperature plasma experiments. Nukleonika 53(Suppl. 2) S15-S19.

  • 22. Collins T. J. (2007). ImageJ for microscopy. BioTechniques 43(Suppl. 1) 25.

  • 23. Dörschel B. Bretschneiderm R. Hermsdorf D. Kadner K. & Kühne H. (1999). Measurement of the track etch rates along proton and alpha particle trajectories in CR-39 and calculation of the detection effi ciency. Radiat. Meas. 31 103-107.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 118 11
PDF Downloads 70 52 3