Multibarrier system preventing migration of radionuclides from radioactive waste repository


Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS). The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. CEA. (2012). Report on sustainable radioactive waste management. (2012). CEA Nuclear Energy Division, Saclay Center.

  • 2. Zakrzewska-Trznadel, G., Zielińska, B., Sommer, S., & et al. (2012). Określenie strategii badawczo-rozwojowej dla potrzeb planu postępowania z odpadami promieniotwórczymi i wypalonym paliwem. Warsaw: IChTJ. (IV/17/P/15004/4390/12/DEJ). Unpublished document.

  • 3. Chapman, N., & Hooper, A. (2011). The disposal of radioactive wastes underground. In Proceedings of the Geologists’ Association, 123, (pp. 46-63).

  • 4. Engineered Barrier Systems (EBS): Design Requirements and Constraints. (2004). Workshop Proceedings, Turku, Finland, 26-29 August 2003, in co-operation with the European Commission and hosted by Posiva Oy, Finland.

  • 5. Zakrzewska-Trznadel, G., Harasimowicz, M., & Chmielewski, A. G. (2001). Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep. Purif. Technol., 22/23, 617-625.

  • 6. Tomaszewska, B., & Bodzek, M. (2013). The removal of radionuclides during desalination of geothermal waters containing boron using the BWRO system. Desalination, 309, 284-290.

  • 7. Wdowin, M., Franus, M., Panek, R., Bandura, L., & Franus, W. (2014). The conversion technology of fl y ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. DOI: 10.1007/ s10098-014-0719-6,

  • 8. IAEA. (2001). Performance of engineered barrier materials in near surface disposal facilities for radioactive waste, results of a coordinated research project. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1255).

  • 9. IPPA Report from I Workshop in Poland IPPA FP7-269849 Project Deliverable 6.3, date of issue 08.03.2012; Project co-funded by the European Commission under the Seventh Euratom Framework Programme for Nuclear Research and Training Activities (2007-2011).

  • 10. Lankof, L., & Pająk, L. (2014). Założenia metodyczne w zakresie modelowania migracji radionuklidów w środowisku geologicznym w sąsiedztwie składowisk nisko i średnioaktywnych odpadów promieniotwórczych. Technika Poszukiwań Geologicznych Geotermia, Zrównoważony Rozwój nr 2/2014. Wyd. IGSMiE PAN.

  • 11. IAEA. (2004). Safety Assessment Methodologies for Near Surface Disposal Facilities Vol. 1 - Review and enhancement of safety assessment approaches and tools. Vienna: International Atomic Energy Agency.

  • 12. Crăciun, C. (1997). Mineralogical, physical and chemical research of clay deposits from Saligny area. Economical Contract no. 37.1/1997, Romanian Academy for Science in Agriculture and Forestry ‘Gheorghe Ionescu-Siseşti’. Bucharest Institute for Research in Pedology and Agro-chemistry.

  • 13. Bondietti, E. A. (1982). Mobile species of Pu, Am, Cm, Np and Tc in the environment. Environmental Migration of Long-Lived Radionuclides. Vienna: International Atomic Energy Agency. (SM257/42).

  • 14. Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley National Laboratory.

  • 15. Curtis, M., Oldenburg, C., & Pruess, K. (1995). EOS7R: Radionuclide Transport for TOUGH2, Berkeley: Lawrence Berkeley National Laboratory. (Report LBL-34868).

  • 16. Pruess, K., Oldenburg, C., & Moridis, G. (2012). TOUGH2 User’s Guide, Version 2. (p. 197). Berkeley: Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California.

  • 17. Dendys, M., Tomaszewska, B., & Pająk, L. (2014). Modelowanie numeryczne jako narzędzie wspomagające badania systemów geotermalnych. In A. Krawiec & I. Jamroska (Eds.), Modele matematyczne w hydrogeologii (pp. 199-206). Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.

  • 18. Bujakowski, W., & Tomaszewska, B. (Eds.). (2014). Atlas wykorzystania wód termalnych do skojarzonej produkcji energii elektrycznej i cieplnej w układach binarnych w Polsce (Atlas of the possible use of geothermal waters for combiner production of electricity and heat using binary systems in Poland). Kraków: Wydawnictwo “Jak”.

  • 19. Śliwa, T., Gonet, A., Złotkowski, A., Pająk, L., Sapińska-Śliwa, A., & Jezuit, Z. (2012). Zintegrowany system otworowych wymienników ciepła i kolektorów słonecznych. Monografi e Wydawnictw Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie 0474 (pp. 161-165, abstract). Kraków: AGH.


Journal + Issues