Growth and EPR properties of ErVO4 single crystals

Open access

Abstract

Single crystals of ErVO4 were grown by the Czochralski method under ambient pressure in a nitrogen atmosphere. Obtained crystals were transparent with strong pink coloring. Electron paramagnetic resonance (EPR) spectra were recorded as a function of the applied magnetic field. Temperature and angular dependences of the EPR spectra of the samples in the 3–300 K temperature range were analyzed applying both Lorentzian––Gauss approximation for diluted medium and Dyson for dense magnetic medium. EPR-NMR program was done to find local symmetry and spin Hamiltonian parameters of erbium ions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Polosan S. Bettinelli M. & Tsuboi T. (2007). Photoluminescence of Ho3+:YVO4 crystals. Phys. Status Solidi (c) 4(3) 1352–1355. DOI: 10.1002/pssc.200673749.

  • 2. Ohlsson N. Krishna R. M. & Kroll S. (2002). Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Commun.201 71–77. DOI: 10.1016/S0030-4018(01)01666-2.

  • 3. Terada Y. Shimamura K. Kochurikhin V. V. Barashov L. V. Ivanov M. A. & Fukuda T. (1996). Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth167 369–372. DOI: 10.1016/0022-0248(96)00407-1.

  • 4. Guillot-Noel O. Simons D. & Gourier D. (1999). EPR study of the multisite character of Nd3+ ions in zircon-type matrices YMO4 (M = V P As). J. Phys. Chem. Solids60 555–565. DOI: 10.1016/S0022-3697(98)00299-6.

  • 5. Misra S. K. Isbe S. Capobianco J. A. & Cavalli E. (1999). Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chem. Phys. 240 313–318. DOI: 10.1016/S0301-0104(98)00393-0.

  • 6. Will G. Lugscheider W. Zinn W. & Patscheke E. (2006). Neutron diffraction and susceptibility measurements on ErPO4 and ErVO4. Solid State Phys. 46(2) 597–601. DOI: 10.1002/pssb.2220460216.

  • 7. Range K. & Meister H. (1990). ErVO4-II a scheelite-type high-pressure modification of erbium orthovanadate. Acta Crystallogr. C-Cryst. Struct. Commun. 46 1093–1094. DOI: 10.1107/S0108270189014162.

  • 8. Misra S. K. & Andronenko S. I. (2001). EPR study of Er3+ crystal-field and Ho-165(3+)-Er3+ interactions in single crystals of HoxY1-xVO4 (x=0.02-1.00). Phys. Rev. B64 094435-8. DOI: 10.1103/Phys-RevB.64.094435.

  • 9. Misra S. K. & Andronenko S. I. (1996). Effect of host paramagnetic ions on the Gd3+ EPR linewidth in diluted Van-Vleck paramagnets TmxLu1-xPO4 and HoxY1-xVO4 and EPR spectra of Er3+ in HoxY1-xVO4 Phys. Rev. B53 11631–11641. DOI: 10.1103/PhysRevB.53.11631.

  • 10. Abragam A. & Bleanely B. (1970). Electron paramagnetic resonance of transition ions. London: Oxford University Press.

  • 11. Oka K. Unoki H. Shibata H. & Eisaki H. (2006). Crystal growth of rare-earth orthovanadate (RVO4) by the floating-zone method. J. Cryst. Growth286 288–293. DOI: 10.1016/j.jcrysgro.2005.08.058.

  • 12. Mombourquette M. J. Weil J. A. & McGavi D. G. (1999). EPR-NMR User’s manual. Saskatoon Canada: Department of Chemistry University of Saskatchewan.

  • 13. Pool C. P. & Farach H. A. (1979). Lineshapes in electron spin resonance. Bull. Magn. Reson. 1(4) 162–194.

  • 14. Dyson F. J. (1955). Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev. 98 337–359. DOI: 10.1103/PhysRev.98.349.

  • 15. Benner H. Brodehl M. Seitz H. & Wiese J. (1983). Influence of nondiagonal dynamic susceptibility on the EPR signal of Heisenberg magnet. J. Phys. C-Solid State Phys. 16 6011–6030. http://iopscience.iop.org/0022-3719/16/31/015.

  • 16. Choukroun J. Richard J.-L. & Stepanov A. (2003). Electron paramagnetic resonance in weakly anisotropic Heisenberg magnets with a symmetric anisotropy. Phys. Rev. B68 144415-10. DOI: 10.1103/Phys-RevB.68.144415.

  • 17. Weil J. A. & Bolton J. R. (2007). Electron paramagnetic resonance. Hoboken New Jersey: John Wiley & Sons Inc.

  • 18. Ranon U. (1968). Paramagnetic resonance of Nd3+ Dy3+ Er3+ and Yb3+ in YVO4. Phys. Lett. A28 228–229. DOI: 10.1016/0375-9601(68)90218-1.

  • 19. Bravo D. Martin A. & Lopez F. J. (1999). A new EPR centre of Er3+ in MgO or ZnO co-doped LiNbO3 single crystals. Solid State Commun. 112 541–554. DOI: 10.1016/S0038-1098(99)00395-6.

  • 20. Misra S. K. Chang Y. & Felsteiner J. (1997). A calculation of effective g-tensor values for R3+ ions in RBa2Cu3O7-δ and RBa2Cu4O8 (R = rare earth): Low temperature ordering of rare-earth moments. J. Phys. Chem. Solids58 1–11. DOI: 10.1016/S0022-3697(96)00110-2.

  • 21. Chai R.-P. Kuang X.-Y. Li C.-G. & Zhao Y.-R. (2011). Theoretical studies of EPR spectra and defect structure for three Er3+ centers in thorium dioxide. Chem. Phys. Lett. 505 65–70. DOI: 10.1016/j.cplett.2011.02.013.

  • 22. Shannon R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A32 751–767. DOI: 10.1107/S0567739476001551.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 114 1
PDF Downloads 100 60 0