EMR study and superposition model analysis of Cr3+ and Fe3+ impurity ions in mullite powders used in aerospace industry

Open access

Abstract

In this work, the electron magnetic resonance (EMR) spectra of the mullites powders were measured for different grain sizes (0.07 and 0.12 mm). We have used EMR spectroscopy at X-band, combined with superposition model (SPM) calculations to reveal electronic structure and establish correlations between structure, and surroundings of these complexes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Stefaniuk I. Potera P. & Cebulski J. (2010). The EPR measurements of Al2O3 powders and mullites used in aerospace industry for cores and shapes. Curr. Top. Biophys.33(Suppl. A) 227–230.

  • 2. Stefaniuk I. Rogalska I. Potera P. & Wróbel D. (2013). EPR measurements of ceramic cores used in the aircraft industry. Nukleonika58(3) 391–395.

  • 3. Schneider H. & Komarneni S. (2006). Mullite. John Wiley & Sons. Retrieved 25 April 2006 from http://onlinelibrary.wiley.com/book/10.1002/3527607358. DOI: 10.1002/3527607358.

  • 4. Rager H. Schneider H. & Graetsch H. (1990). Chromium incorporation in mullite. Am. Miner.75 392–397.

  • 5. Abragam A. & Bleaney B. (1986). Electron paramagnetic resonance of transition ions. New York: Dover.

  • 6. Rudowicz C. (1987). Concept of spin Hamiltonian forms of zero-field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review. Magn. Reson. Rev. 13 1–89; (1988) Erratum ibidem 13 335.

  • 7. Rudowicz C. & Misra S. K. (2001). Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies. Appl. Spectrosc. Rev. 36 11–63.

  • 8. Rudowicz C. (1985). Transformation relations for the conventional Ok q and normalized O’k q Stevens operator equivalents with k = 1 to 6 and −k ≤ q ≤ +k. J. Phys. C18 1415–1430; (1985) Erratum: ibidem C18 3837.

  • 9. Rudowicz C. & Chung C. Y. (2004). The generalization of the extended Stevens operators to higher ranks and spins and a systematic review of the tables of the tensor operators and their matrix elements. J. Phys.-Condens. Matter16 5825–5847.

  • 10. Rudowicz C. (2000). On the relations between the zero-field splitting parameters in the extended Stevens operator notation and the conventional ones used in EMR for orthorhombic and lower symmetry. J. Phys.-Condens. Matter12 L417–L423.

  • 11. Rudowicz C. (1986). On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites. J. Chem. Phys. 84 5045–5058.

  • 12. Griscom D. L. (1980). Electron spin resonance in glasses. J. Non-Cryst. Solids40 211–272.

  • 13. Berger R. Yahiaoui E. M. Bissey J.-C. Béiade P. Kliava J. Zinsou P. K. & Beziade P. (1995). Diluted and non-diluted ferric ions in borate glasses studied by electron paramagnetic resonance. J. Non-Cryst. Solids 180 151–163.

  • 14. Simion S. van der Pol A. Reijerse E. J. Kentgens A. M. van Moorsel G. J. & de Boer E. (1995). Magnetic resonance studies on porous alumina doped with iron and chromium. J. Chem. Soc. Faraday Trans. 91(10) 1519–1522.

  • 15. Stefaniuk I. & Rudowicz C. (2010). Computer program SPM-MC and its applications in EMR studies of transition ions in crystals. Curr. Top. Biophys. 33(Suppl. A) 217–220.

  • Stefaniuk I. & Rudowicz C. (2013). Computer program superposition model-Monte Carlo (SPM-MC) and its applications in EMR studies of transition ions at low symmetry sites Fe3+ doped YAP crystals. Nukleonika58(3) 397–400.

  • 16. Newman D. J. & Urban W. (1975). Interpretation of S-state ion E.P.R. spectra. Adv. Phys. 24 793–844.

  • 17. Newman D. J. & Ng B. (1989). The superposition model of crystal fields. Rep. Prog. Phys. 52 699–763.

  • 18. Rudowicz C. (1987). On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators. J. Phys. C-Solid State Phys. 20 6033–6037.

  • 19. Yeom T. H. Chang Y. M. Choh S. H. & Rudowicz C. (1994). Experimental and theoretical investigations of spin Hamiltonian parameters for the low symmetry Fe3+ centre in LiNbO3. Phys. Status Solidi B-Basic Solid State Phys.52 409–415.

  • 20. Stefaniuk I. Rudowicz C. Gnutek P. & Suchocki A. (2009). EPR study of Cr3+ and Fe3+ impurity ions in nominally pure and Co2+-doped YAlO3 single crystals. Appl. Magn. Reson. 36 371–380.

  • 21. Müller K. A. & Berlinger W. (1983). Superposition model for sixfold-coordinated Cr3+ in oxide crystals. J. Phys. C-Solid State Phys.16 6861–6874.

  • 22. Rudowicz C. & Bramley R. (1985). On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J. Chem. Phys. 83 5192–5197.

  • 23. Kripal R. Yadav D. Gnutek P. & Rudowicz C. (2009). Alternative zero-field splitting (ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry. J. Phys. Chem. Solids70 827–833.

  • 24. Qin J. Rudowicz C. Chang Y. M. & Yeung Y. Y. (1994). Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: II. Andalusite and sillimanite. Phys. Chem. Miner. 21 532–538.

  • 25. Yeung Y. Y. Qin J. Chang Y. M. & Rudowicz C. (1994). Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: I. Kyanite. Phys. Chem. Miner. 21 526–531.

  • 26. Yeung Y. Y. (2013). Superposition model and its applications. In M. G. Brik & N. M. Avram (Eds.) Optical properties of 3d-ions in crystals: Spectroscopy and crystal field analysis (Chapter 3). Springer and Tsinghua University Press.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 97 11
PDF Downloads 73 48 1