Enhanced resonant second harmonic generation in plasma based on density transition

Open access


Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Sharma J. K. & Parashar J. (2003). Parametric instability of a lower hybrid wave in a dusty plasma. Indian J. Pure Appl. Phys.41 290–294.

  • 2. Sharma J. K. Parashar J. & Mehta A. S. (2003). Relativistic stimulated Raman scattering in a plasma channel. Indian J. Pure Appl. Phys.41 73–76.

  • 3. Parasher J. & Pandey H. D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci. 20 996–999. DOI: 10.1109/27.199564.

  • 4. Parashar J. & Sharma A. K. (1998). Second harmonic generation by an obliquely incident laser on a vacuum plasma interface. Europhys. Lett.41 389. DOI: 10.1209/epl/i1998-00162-1.

  • 5. Pramanik T. K. & Bhattacharya D. P. (1990). Harmonic generation in semiconductors in the presence of deep repulsive traps. Solid State Commun.74 539–542. DOI: 10.1016/0038-1098(90)90342-9.

  • 6. Malka V. Modena A. Najmudin Z. Dangor A. E. Clayton C. E. Marsh K. A. Joshi C. Danson C. Neely D. & Walsh. F. N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Plasma Phys.4 1127–1131. DOI: 10.1063/1.872201.

  • 7. Esarey E. Ting A. Sprangle P. Umstadter D. & Liu X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21 95–104. DOI: 10.1109/27.221107.

  • 8. Kant N. Gupta D. N. & Suk H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A375 35. DOI: 10.1016/j.physleta.2011.06.062.

  • 9. Tatarakis M. Watts I. Beg F. N. Clark E. L. Dangor A. E. Gopal A. Haines M. G. Norreys P. A. Wagner U. Wei M. S. Zepf M. & Krushelnick K. (2002). Laser technology-measuring huge magnetic fields. Nature415 280–280. DOI: 10.1038/415280a.

  • 10. Kant N. & Sharma A. K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D-Appl. Phys. 37 2395. DOI: 10.1088/0022-3727/37/17/009.

  • 11. Petrov E. Y. & Kudrin A. V. (2010). Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium. Phys. Rev. Lett. 104 190404-7. DOI: 10.1103/PhysRevLett.104.190404.

  • 12. Kant N. & Sharma A. K. (2004). Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma. J. Phys. D-Appl. Phys. 37 998–1001. DOI: 10.1088/0022-3727/37/7/007.

  • 13. Osman F. Castillo R. & Hora H. (1999). Relativistic and ponderomotive self-focusing at laser–plasma interaction. J. Plasma Phys. 61 263–273. DOI: 10.1017/S0022377898007417.

  • 14. Hafizi B. Ting A. Sprangle P. & Hubbard R. F.. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E62 4120. DOI: 10.1103/PhysRevE.62.4120.

  • 15. Hora H. & Ghatak A. K. (1985). New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A31 3473. DOI: 10.1103/PhysRevA.31.3473.

  • 16. Baton S. D. Baldies H. A. Jalinaud T. & Labaune C. (1993). Fine-scale spatial and temporal structures of second-harmonic emission from an underdense plasma. Europhys. Lett. 23 191. DOI: 10.1209/0295-5075/23/3/006.

  • 17. Schifano E. Baton S. D. Biancalana V. Giulietti A. Giulietti D. Labaune C. & Renard N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams12 435. DOI: 10.1017/S0263034600008296.

  • 18. Ganeev R. A. Chakera J. A. Raghuramaiah M. Sharma A. K. Naik P. A. & Gupta P. D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E63 026402. DOI: 10.1103/PhysRevE.63.026402.

  • 19. Banerjee S. Valenzuela A. R. Shah R. C. Maksimchuk A. & Umstadter D. (2002). High harmonic generation in relativistic laser–plasma interaction. Phys. Plasmas9 2393. DOI: 10.1063/1.1470167.

  • 20. Lin H. Chen L. & Kieffer J. C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E65 036414. DOI: 10.1103/PhysRevE.65.036414.

  • 21. Mori M. Takahashi E. & Kondo K. (2002). Image of second harmonic emission generated from ponderomotively excited plasma density gradient. Phys. Plasmas9 2812. DOI: 10.1063/1.1481506.

  • 22. Kuo C. C. Pai C. H. Lin M. W. Lee K. H. Lin J. Y. Wang J. & Chen S. Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98 033901. DOI: 10.1103/PhysRevLett.98.033901.

  • 23. Kant N. Sarlach S. & Singh H. (2011). Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika56(2) 149–153.

  • 24. Gupta D. N. Hur M. S. & Suk H. (2006). Energy exchange during stimulated Raman scattering of a relativistic laser in plasma. J. Appl. Phys. 100 103101-5. DOI: 10.1063/1.2384808.

  • 25. Singh A. & Walia K. (2011). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy30 555–560. DOI: 10.1007/s10894-011-9426-z.

  • 26. Kant N. Wani M. A. & Kumar A. (2012). Self-focusing of Hermite-Gaussian laser beams in plasma under plasma density ramp. Opt. Commun.285 4483–4487. DOI: 10.1063/1.4870080.

  • 27. Nanda V. Kant N. & Wani M. A. (2013). Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas20 113109-7. DOI: 10.1063/1.4870080.

  • 28. Nanda V. & Kant N. (2014). Enhanced relativistic self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition. Phys. Plasmas21 042101-6. DOI: 10.1063/1.4870080.

  • 29. Nanda V. & Kant N. (2014). Strong self-focusing of a cosh-Gaussian Laser Beam in collisionless magnetoplasma under plasma density ramp. Phys. Plasmas21 072111-8. DOI: 10.1063/1.4889862.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 125 2
PDF Downloads 80 63 3