Shock dynamics induced by double-spot laser irradiation of layered targets

Open access


We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS) iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Stevenson R. M. Pepler D. A. Danson C. N. Norman M. J. Bett T. H. & Ross I. N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett.19(6) 363–365.

  • 2. Koenig M. Faral B. Boudenne J. M. Batani D. Benuzzi A. & Bossi S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E50(5) R3314.

  • 3. Batani D. Bleu C. & Lower Th. (2002). Design simulation and application of phase plates. Eur. Phys. J. D19 231–243.

  • 4. Kato Y. Mima K. Miyanaga N. Arinaga S. Kitagawa Y. Nakatsuka M. & Yamanaka C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53(11) 1057.

  • 5. Dixit S. N. Lawson J. K. Manes K. R. Powell H. T. & Nugent A. (1994). Kinoform phase plates for focal plane irradiance profile control. Opt. Lett. 19(6) 417–419.

  • 6. Skupsky S. Short R. W. & Kessler T. (1989). Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys.66 3456.

  • 7. Lehmberg R. H. & Obenschain S. P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun.46 27–31.

  • 8. Willi O. Afshar-rad T. Coe S. & Giulietti A. (1990). Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Phys. Fluids2 1318–1324.

  • 9. Batani D. Bossi S. Benuzzi A. Koenig M. Faral B. Boudenne J. M. Grandjouan N. Atzeni S. & Temporalet M. (1996). Optical smoothing for shock-wave generation: application to the measurement of equations of state. Laser Part. Beams14(2) 211–223.

  • 10. Montgomery D. S. Moody J. D. Baldis H. A. Afeyan B. B. Berger R. L. Estabrook K. G. Lasinski B. F. Williams E. A. & Labaune C. (1996). Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas3(5) 1728.

  • 11. Labaune C. Baldis H. A. Schifano E. Bauer B. S. Maximov A. Ourdev I. Rozmus W. & Pesme D. (2000). Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Phys. Rev. Lett. 85(8) 1658.

  • 12. Emery M. H. Gardner J. H. Lehmberg R. H. & Obenschain S. P. (1991). Hydrodynamic target response to an induced spatial incoherence-smoothed laser beam. Phys. Fluids B3 2640–2650.

  • 13. Desselberger M. Afshar-rad T. Khattak F. Viana S. & Willi O. (1992) Nonuniformity imprint on the ablation surface of laser-irradiated targets. Phys. Rev. Lett.68(10) 1539.

  • 14. Batani D. Balducci A. Nazarov W. Löwer Th. Hall T. Koenig M. Faral B. Benuzzi A. & Temporal M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E63(4) 046410.

  • 15. Batani D. Nazarov W. Hall T. Löwer Th. Koenig M. Faral B. Benuzzi-Mounaix A. & Grandjouan N. (2000). Foam smoothing studied through laser produced shocks. Phys. Rev. E62(6) 8573–8582.

  • 16. Benocci R. Batani D. Dezulian R. Redaelli R. Lucchini G. Canova F. Stabile H. Faure J. Krousky E. Masek K. Pfeifer M. Skala J. Dudzak R. Koenig M. Tikhonchuk V. Nicolaï Ph. & Malka V. (2009). Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils. Phys. Plasmas16(1) 012703.

  • 17. Jungwirth K. Cejnarova A. Juha L. Kralikova B. Krasa J. Krousky E. Krupickova P. Laska L. Masek K. Mocek T. Pfeifer M. Präg A. Renner O. Rohlena K. Rus B. Skala J. Straka P. & Ullschmied J. (2001). The Prague Asterix Laser System. Phys. Plasmas8 2495.

  • 18. Zel’dovich Ya. B. & Raizer Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamical phenomena. Dover New York.

  • 19. Lindl J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas2 3933–4024.

  • 20. Ramis R. Meyer-ter-Vehn J. & Ramírez J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun.180 977–994.

  • 21. Aliverdiev A. Batani D. Dezulian R. Vinci T. Benuzzi-Mounaix A. Koenig M. & Malka V. (2008). Hydrodynamics of laser-produced plasma corona by optical interferometry. Plasma Phys. Control. Fusion50 105013.

  • 22. Aliverdiev A. Batani D. Antonelli L. Jakubowska K. Dezulian R. Amirova A. Gajiev G. Khan M. & Pant H. C. (2014). Use of multilayer targets for achieving off-Hugoniot states. Phys. Rev. E89 053101.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 139 1
PDF Downloads 110 77 0