Magnetic nanowires (Fe, Fe-Co, Fe-Ni) – magnetic moment reorientation in respect of wires composition

Open access

Abstract

Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC) deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered) or chemical composition (Co or Ni). The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ersen O. Begin S. Houlle M. Amadou J. Janowska I. Greneche J. M. Crucifix C. & Pham-Huu C. (2008). Microstructural investigation of magnetic CoFe2O4 nanowires inside carbon nanotubes by electron tomography. Nano Lett.8 1033–1040. DOI: 10.1021/nl072714e.

  • 2. Peter L. Casik A. Vad K. Toth-Kadar E. Pekker A. & Molnar G. (2010). On the composition depth profile of electrodeposited Fe-Co-Ni alloys. Electrochim. Acta55 4734–4741. DOI: 10.1016/j.electacta.2010.03.075.

  • 3. Osaka T. (2000). Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim. Acta45 3311–3321. DOI: 10.1016/S0013-4686(00)00407-2.

  • 4. Quemper J. M. Nicolas S. Gilles J. P. Grandchamp J. P. Bosseboeuf A. Bourouina T. & Dufour-Gergam E. (1999). Permalloy electroplating through photoresist molds. Sens. Actuator74 1–4. DOI: 10.1016/S0924-4247(98)00323-9.

  • 5. Munoz A. G. Schiefer C. Nentwig Th. Man W.-Y. & Kisker E. (2007). Magneto impedance of electroplated NiFeMo/Cu microwires for magnetic sensors. J. Phys. D-Appl. Phys.40 5013–5020. DOI: 10.1088/0022-3727/40/17/001.

  • 6. Bauer L. A. Birenbaum N. S. & Meyer G. J. (2004). Biological applications of high aspect ratio nanoparticles. Mater. Chem.14 517–526. DOI: 10.1039/b312655b.

  • 7. Niemirowicz K. Swiecicka I. Wilczewska A. Z. Misztalewska I. Kalska-Szostko B. Bienias K. Bucki R. & Car H. (2014). Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int. J. Nanomed.8(9) 2217–2224. DOI: 10.2147/IJN.S56588.

  • 8. Kalska-Szostko B. Orzechowska E. & Wykowska U. (2013). Organophosphorous modifications of multifunctional magnetic nanowires. Colloid Surf. B-Biointerfaces111 509–516. DOI: 10.1016/j.colsurfb.2013.05.03.

  • 9. Kalska-Szostko B. & Orzechowska E. (2011). Preparation of magnetic nanowires modified with functional groups. Curr. Appl. Phys.11(5) S103–S108. DOI: 10.1016/j.cap.2011.04.051.

  • 10. Liu X. Zangari G. & Shen L. (2000). Electrodeposition of soft high moment Co-Fe-Ni thin films. J. Appl. Phys. 87 5410–5412. DOI: 10.1063/1.373359.

  • 11. Kalska-Szostko B. Brancewicz E. Mazalski P. Sveklo J. Olszewski W. Szymański K. & Sidor A. (2009). Electrochemical deposition of nanowires in porous alumina. Acta Phys. Pol. A115 542–544.

  • 12. Kalska-Szostko B. Brancewicz E. Olszewski W. Szymański K. Sidor A. Sveklo J. & Mazalski P. (2009). Electrochemical preparation of magnetic nanowires. Solid State Phenom.151 190–196. DOI: 10.4028/www.scientific.net/SSP.151.190.

  • 13. Kalska-Szostko B. & Orzechowska E. (2011). Surface modification of core–shell nanowire with protein adsorption. Mater. Chem. Phys.129 256–260. DOI: 10.1016/j.matchemphys.2011.04.01.

  • 14. Saedi A. & Ghorbani M. (2005). Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys.91 417–423. DOI: 10.1016/j.matchemphys.2004.12.001.

  • 15. Kalska-Szostko B. Wykowska U. Piekut K. & Zambrzycka E. (2013). Stability of iron (Fe) nanowires. Colloid Surf. A-Physiochem. Eng. Asp.416 66–72. DOI: 10.1016/j.colsurfa.2012.10.019.

  • 16. Charlot F. Gaffet E. Zeghmati B. Bernard F. & Niepce J. C. (1999). Mechanically activated synthesis studied by X-ray diffraction in the Fe-Al system. Mater. Sci. Eng. A263 279–288. DOI: 10.1016/S0921-5093(98)01017-X.

  • 17. Matveev V. V. Baranov D. A. Yurkov G. Y. Akatiev N. G. Dotsenko I. P. & Gubin S. P. (2006). Cobalt nanoparticles with preferential hcp structure: A confirmation by X-ray diffraction and NMR. Chem. Phys. Lett.422 402–405. DOI: 10.1016/j.cplett.2006.02.099.

  • 18. Smirnov A. Hausner D. Laffers R. Strongin D. R. & Schoonen M. A. A. (2008). Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans.9(5) 1–20. DOI: 10.1186/1467-4866-9-5.

  • 19. Greenwood N. N. & Gibb T. C. (1971). Mössbauer spectroscopy. London: Chapman and Hall.

  • 20. Korecki J. & Gradmann U. (1985). In situ Mossbauer analysis of hyperfine interaction near Fe (110) surfaces and interfaces. Phys. Rev. Lett. 55(22) 2491–2494. DOI: 10.1103/PhysRevLett.55.2491.

  • 21. Li Q. F. Wang J. B. Yan Z. J. & Xue D. S. (2004). The effect of diameter on micro-magnetic properties of Fe0.68Ni0.32 nanowire arrays. J. Magn. Magn. Mater. 278 323–327. DOI: 10.1016/j.jmmm.2003.12.1357.

  • 22. de Oliveira L. S. da Cunha J. M. B. Spada E. R. & Hallouche B. (2007). Mössbauer spectroscopy and magnetic properties in thin films of FexNi100−x electroplated on silicon (1 0 0). Appl. Surf. Sci.254 347–350. DOI: 10.1016/j.apsusc.2007.07.093.

  • 23. Scorzelli R. B. Souza Azevedo I. Pereira R. A. Perez C. A. C. & Fernandes A. A. R. (1994). Mössbauer spectroscopy study of the metallic particles extracted from the Antarctic chondrite Allan Hills-769. In Proceedings NIPR Symposium Antarct. Meteorites 7 31 May–2 June 1993 (pp. 299–303). Tokyo: National Institute of Polar Research.

  • 24. Ping J. Y. Rancourt D. G. & Dunlap R. A. (1992). Physical basis and break down of hyperfine field distribution analysis in fcc Fe-Ni (5–70 at%Fe). J. Magn. Magn. Mater. 103 285–313. DOI: 10.1016/0304-8853(92)90201-X.

  • 25. Guenzburger D. & Terrera J. (2006). Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe-Ni alloys. Hyperfine Interact. 168 1159–1163. DOI: 10.1007/sI0751-006-9416-0.

  • 26. Häggström L. Kalska B. Blomquist P. & Wappling R. (2002). Magnetic anisotropy and magnetic fields in bcc Fe/Co (001) superlattices. J. Alloy. Compd. 347 252–258. DOI: 10.1016/S0925-8388(02)00762-4.

  • 27. Kalska B. Blomquist P. Haggstrom L. & Wappling R. (2001). Interface roughness/intermixing and magnetic moments in a Fe/Co(001) superlattice. J. Phys.-Condens. Matter13 2963–2970. DOI: 10.1088/0953-8984/13/13/310.

  • 28. Kalska B. Haggstrom L. Blomquist P. & Wappling R. (2000). Conversion electron Mössbauer spectroscopy studies of the magnetic moment distribution in Fe/V multilayers. J. Phys.-Condens. Matter12 539–548. DOI: 10.1088/0953-8984/12/5/302.

  • 29. Hamrakulov B. Kim I. Lee M. G. & Park B. H. (2009). Electrodeposited Ni Fe Co and Cu single and multilayer nanowires arrays on anodic aluminium oxide template. Trans. Nonferrous Met. Soc. China19 83–87. DOI: 10.1016/S1003-6326(10)60250-6.

  • 30. Leitao D. C. Sousa C. T. Ventura J. Amaral J. S. Carpineiro F. Pirota K. R. Vazquez M. Sousa J. B. & Aroujo J. P. (2008). Characterization of electrodeposited Ni and Ni80Fe20 nanowires. J. Non-Cryst. Solids354 5241–5243. DOI: 10.1016/j.jnoncrysol.2008.05.088.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513



CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 225 13
PDF Downloads 98 81 9