Temperature dependence of the short-range order parameter for Fe0.90Cr0.10 and Fe0.88Cr0.12 alloys

Open access


The 57Fe Mössbauer spectra for the iron-based solid solutions Fe0.90Cr0.10 and Fe0.88Cr0.12 were measured at different temperatures ranging from 300 K to 900 K. Analysis of the obtained spectra shows that the distribution of impurity atoms in the two first coordination shells of 57Fe nuclei is not random and it cannot be described by the binomial distribution. Quantitatively, the effects were described in terms of the atomic short-range order (SRO) parameters and the pair-wise interaction energy with the help of a quasi-chemical type formulation introduced by Cohen and Fine. The obtained results reveal strong clustering-type correlations in the studied samples (a predominance of Fe-Fe and Cr-Cr bonds). Moreover, the changes in SRO values observed during thermal processing suggest that the distribution of Cr atoms in an α-iron matrix is strongly temperature dependent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Erhart P. Caro A. Serrano de Caro M. & Sadigh B. (2008). Short-range order and precipitation in Fe-rich Fe-Cr alloys: Atomistic off-lattice Monte Carlo simulations. Phys. Rev. B77 134206. DOI: 10.1103/PhysRevB.77.134206.

  • 2. Bonny G. Erhart P. Caro A. Pasianot R. C. Malerba L. & Caro M. (2009). The influence of short range order on the thermodynamics of Fe-Cr alloy. Model. Simul. Mater. Sci. Eng.17 025006. DOI: 10.1088/0965-0393/17/2/025006.

  • 3. Bonny G. Pasianot R. C. Malerba L. Caro A. Olsson P. & Lavrentiev M. Y. (2009). Numerical prediction of thermodynamic properties of iron-chromium alloys using semi-empirical cohesive models: The state of the art. J. Nucl. Mater. 385 268–277. DOI: 10.1016/j.jnucmat.2008.12.001.

  • 4. Mirebeau I. & Parette G. (2010). Neutron study of the short range order inversion in Fe1−xCrx. Phys. Rev. B82 104203. DOI: 10.1103/PhysRevB.82.104203.

  • 5. Dubiel S. M. & Cieślak J. (2011). Short-range order in iron-rich Fe-Cr alloys as revealed by Mössbauer spectroscopy. Phys. Rev. B83 180202. DOI: 10.1103/PhysRevB.83.180202.

  • 6. Idczak R. Konieczny R. & Chojcan J. (2012). Atomic short-range order in Fe1-xCrx alloys studied by 57Fe Mössbauer spectroscopy. J. Phys. Chem. Solids73 1095–1098. DOI: 10.1016/j.jpcs.2012.05.010.

  • 7. Dubiel S. M. & Cieślak J. (2013). Effect of thermal treatment on the short-range order in Fe-Cr alloys. Mater. Lett.107 86–89. DOI: 10.1016/j.matlet.2013.05.127.

  • 8. Mansur L. K. Rowcliffe A. F. Nanstad R. K. Zinkle S. J. Corwin W. R. & Stoller R. E. (2004). Materials needs for fusion Generation IV fission reactors and spallation neutron sources – similarities and differences. J. Nucl. Mater. 329–333 166–172. DOI: 10.1016/j.jnucmat.2004.04.016.

  • 9. Cook I. (2006). Materials research for fusion energy. Nat. Mater. 5 77–80. DOI:10.1038/nmat1584.

  • 10. Cowley J. M. (1950). An approximate theory of order in alloys. Phys. Rev.77 669–675. DOI: http://dx.doi.org/10.1103/PhysRev.77.669.

  • 11. Idczak R. Konieczny R. & Chojcan J. (2013). Short-range order in iron alloys studied by 57Fe Mössbauer spectroscopy. Solid State Commun.159 22–25. DOI: 10.1016/j.ssc.2013.01.015.

  • 12. Cohen J. B. & Fine M. E. (1962). Some aspects of short-range order. Journal de Physique et le Radium23 749–762. DOI: 10.1051/jphysrad:019620023010074901.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 110 2
PDF Downloads 65 51 1