The role and position of iron in 0.8CaZrO3-0.2CaFe2O4

Open access

Abstract

The aim of the study was to characterize the 0.8CaZrO3-0.2CaFe2O4 composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of 57Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO3-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe3+ ions were observed in the obtained materials. Two of them corresponded to CaFe2O4 phase and one was associated with the substitution of Zr4+ by Fe3+ in the CaZrO3 structure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Dravid V. P. Sung C. M. Notis M. R. & Lyman C. E. (1989). Crystal symmetry and coherent twin structure of calcium zirconate. Acta Crystallogr. Sect. B-Struct. Sci.45(3) 218–227. DOI: 10.1107/S0108768189000856.

  • 2. Rossa N. L. & Chaplin T. D. (2003). Compressibility of CaZrO3 perovskite: Comparison with Ca-oxide perovskites. J. Solid State Chem. 172(1) 123–126. DOI: 10.1016/S0022-4596(02)00166-4.

  • 3. Stoch P. Szczerba J. Lis J. Madej D. & Pędzich Z. (2012). Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32(3) 665–670. DOI: 10.1016/j.jeurceramsoc.2011.10.011.

  • 4. Prasanth C. S. Padma Kumar H. Pazhani R. Solomon S. & Thomas J. K. (2008). Synthesis characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J. Alloy. Compd. 464(1/2) 306–309. DOI: 10.1016/j.jallcom.2007.09.098.

  • 5. Pollet M. Marinel S. & Desgardin G. (2004). CaZrO3 a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J. Eur. Ceram. Soc. 24(1) 119–127. DOI: 10.1016/S0955-2219(03)00122-5.

  • 6. Levin I. Amos T. B. Bell S. M. Farber L. Vanderah T. A. Roth R. S. & Toby B. H. (2003). Phase equlibra crystal structures and dielectric anomaly in the BaZrO3-CaZrO3 system. J. Solid State Chem. 175 170–181. DOI: 10.1016/S0022-4596(03)00220-2.

  • 7. Serena S. Sainz M. A. & Caballero A. (2009). The system Clinker-MgO-CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker. J. Eur. Ceram. Soc. 29(11) 2199–2209. DOI: 10.1016/j.jeurceramsoc.2009.01.015.

  • 8. Dudek M. & Bućko M. M. (2003). Electrical properties of stoichiometric and non-stoichiometric calcium zirconate. Solid State Ion.157 183–187.

  • 9. Dudek M. & Drożdż-Cieśla E. (2009). Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate. J. Alloy. Compd. 457 846–854. DOI: 10.1016/j.jallcom.2008.08.020.

  • 10. Hwang S. C. & Choi G. M. (2006). The effect of cation nonstoichiometry on the electrical conductivity of acceptor-doped CaZrO3. Solid State Ion.177 3099–3103. DOI: 10.1016/j.ssi.2006.08.002.

  • 11. Smith K. L. Colella M. Cooper R. & Vance E. R. (2003). Measured displacement energies of oxygen ions in titanates and zirconates. J. Nucl. Mater. 321(1) 19–28. DOI: 10.1016/S0022-3115(03)00197-1.

  • 12. Muller-Buschbaum H. K. (2003). The crystal chemistry of AM2O4 oxometallates. J. Alloy. Compd. 349(1/2) 49–104.

  • 13. Muller O. & Roy R. (1974). The major ternary structural families. New York: Springer.

  • 14. Rietveld H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2 65–71. DOI: 10.1107/S0021889869006558.

  • 15. Rodriguez-Carvajal J. (1993). Recent advances in magnetic structure determination by neutron powder. Diffr. Phys. B192(1/2) 55–69. DOI: 10.1016/0921-4526(93)90108-I.

  • 16. Shannon R. D. (1976). Revise effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A32 751–767. DOI: 10.1107/S0567739476001551.

  • 17. Tsipis E. V. Pivak Y. V. Waerenborgh J. C. Kolotygin V. A. Viskup A. P. & Khortan V. V. (2007). Oxygen ionic conductivity Mössbauer spectra and thermal expansion of CaFe2O4-δ. Solid State Ion.178(25/26) 1428–1436. DOI: 10.1016/j.ssi.2007.09.003.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 59 4
PDF Downloads 92 37 6