The study of crystal and magnetic properties of MnNi0.85Fe0.15Ge

Open access

Abstract

Magnetic and Mössbauer measurements were performed for MnNi0.85Fe0.15Ge. The Mössbauer data indicate that Fe atoms in MnNi0.85Fe0.15Ge are randomly distributed over two types of metal sites in hexagonal structure. At 77 K, the hyperfine magnetic fields at Fe located in different crystal sites have similar values of about 12.7 and 12.3 T. The random site distribution of the iron atoms in the non-magnetic hexagonal phase at high temperatures is confirmed by the theoretical calculations in fully relativistic Korringa –Kohn –Rostoker (KKR) method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Liu E. Wang W. Feng L. Zhu W. Li G. Chen J. Zhang H. Wu G. Jiang C. Xu H. & de Boer F. (2012). Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat. Commun. 3 873. DOI: 10.1038/ncomms1868.

  • 2. Chen L. Hu F. X. Wang J. Bao L. F. Sun J. R. Shen B. G. Yin J. H. & Pan L. Q. (2012). Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1−xFex)5Mn36.6In13.4 alloys. Appl. Phys. Lett. 101 012401-1–012401-4. DOI: http://dx.doi.org/10.1063/1.4732525.

  • 3. Szytula A. Pędziwiatr A. T. Tomkowicz Z. & Bazela W. (1981). Crystal and magnetic structure of CoMnGe CoFeGe FeMnGe and NiFeGe. J. Magn. Magn. Mater. 25 176–186.

  • 4. Bhargava S. C. & Iyengar P. K. (1974). Hyperfine interactions of iron in ternary alloys with B82 type structures. Framana2(3) 126–137. DOI: http://repository.ias.ac.in/12443/1/316.pdf.

  • 5. Zhang C. L. Wang D. H. Zhang C. L. Wang D. H. Chen J. Wang T. Z. Xie G. X. & Zhu C. (2011). Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys. Chin. Phys. B20 097501-1–097501-4. DOI: 10.1088/1674-1056/20/9/097501.

  • 6. Zhang C. L. Wang D. H. Cao Q. Q Ma S. C. Xuan H. C. & Du Y. W. (2010). Magnetic phase transitions and magnetocaloric effect in the Co-doped MnNiGe1.05 alloys. J. Phys. D: Appl. Phys. 43 205003. DOI: 10.1088/0022-3727/43/20/205003.

  • 7. Grandjean F. & Gerard A. (1979). Mössbauer spectra of several ternary silicides germanides and antimonides of transition metals. J. Solid State Chem. 2 285–289.

  • 8. Wertheim G. K. Jaccarino V. & Wernick J. H. (1964). Anisotropic hfs interactions in ferromagnets from Mössbauer effect studies. Phys. Rev. 135 A151–A154. DOI: http://dx.doi.org/10.1103/PhysRev.135.A151.

  • 9. Fjellvag H. & Andersen A. F. (1985). On the crystal structure and magnetic properties of MnNiGe. J. Magn. Magn. Mater. 50 291–297.

  • 10. H. Ebert Munich SPRKKR package v.6.3. DOI: http://olymp.cup.uni-muenchen.de/.

  • 11. Vosko S. H. Wilk L. & Nusair M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58 1200–1211. DOI:10.1139/p80-159.

  • 12. Perdew J. P. Burke K. & Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77 3865–3868. DOI: http://dx.doi.org/10.1103/PhysRevLett.77.3865.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 125 2
PDF Downloads 82 55 0