Structure and Mössbauer spectroscopy studies of mechanically activated (BiFeO3)1−x-(BaTiO3)x solid solutions

Open access


(BiFeO3)1-x-(BaTiO3)x solid solutions with x = 0.1–0.4 and 0.7 were investigated. The ceramics were prepared by mechanical activation technology and subsequent heat treatment. As was proved by X-ray diffraction, increase of BaTiO3 concentration causes a change in the crystalline structure from the rhombohedral structure characteristic of BiFeO3 to a cubic one. 57Fe Mössbauer spectroscopy allowed observation of a gradual transformation from an ordered spin structure of Fe3+ ions to the paramagnetic state with an increase of x.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Yin Y.-W. Raju M. Hu W.-J. Weng X.-J. Zou K. Zhu J. Li X.-G. Zhang Z.-D. & Li Q. (2012). Multiferroic tunnel junctions. Front. Phys.7 380–385. DOI: 10.1007/s11467-012-0266-8.

  • 2. Surowiak Z. & Bochenek D. (2007). Ferroikowe materiały inteligentne. Elektronika 6 50–60.

  • 3. Catalan G. & Scott J. F. (2009). Physics and applications of bismuth ferrite. Adv. Mater. 21 2463–2485. DOI: 10.1002/adma.200802849.

  • 4. Gotardo R. A. M. Viana D. S. F. Olzon-Dionysio M. Souza S. D. Garcia D. Eiras J. A. Alves M. F. S. Cotica L. F. Santos I. A. & Coelho A. A. (2012). Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions. J. Appl. Phys. 112(10) 104112–104112-7. DOI: 10.1063/1.4766450.

  • 5. Park T.-J. Papaefthymiou G. C. Viescas A. J. Lee Y. Zhou H. & Wong S. S. (2010). Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solutions nanostructures. Phys. Rev. B82 024431-1-10. DOI: 10.1103/PhysRevB.82.024431.

  • 6. Yang S.-Ch. Kumar A. Petkov V. & Priya S. (2013). Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system. J. Appl. Phys. 113 144101-1-5. DOI: 10.1063/1.4799591.

  • 7. Jartych E. Malesa B. Antolak-Dudka A. & Oleszak D. (2014). Mössbauer spectroscopy studies of multiferroic (BiFeO3)1-x-(BaTiO3)x solid solutions prepared by mechanical activation. Acta Phys. Pol. A125 (3) 837–839. DOI: 10.12693/APhysPolA.125.837.

  • 8. Malesa B. & Mazurek M. (2014). Hyperfine interactions in (BiFeO3)0.9-(BaTiO3)0.1 ceramics prepared by mechanical activation. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 2 16–19. (in Polish).

  • 9. Goossenes D. J. Weekes C. J. Avdeev M. & Hutchison W. D. (2013). Crystal and magnetic structure of (1-x)BiFeO3-xSrTiO3 (x=0.2 0.3 0.4 and 0.8). J. Solid State Chem. 207 111–116. DOI: 10.1016/j.jssc2013.09.024.

  • 10. Rachinger W. A. (1948). A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum. 25 254–260. DOI: 10.1088/0950-7671/25/7/125.

  • 11. Kowal K. Jartych E. Guzdek P. Stoch P. Wodecka-Duś B. Lisińska-Czekaj A. & Czekaj D. (2013). X-ray diffraction Mössbauer spectroscopy and magnetoelectric effect studies of (BiFeO3)s-(BaTiO3)1−x solid solutions. Nukleonika58 (1) 57–61.

  • 12. MacKenzie K. J. D. Dougherty T. & Barrell J. (2008). The electronic properties of complex oxides of bismuth with the mullite structure. J. Eur. Ceram. Soc. 28 499–504. DOI: 10.1016/j.jeurceramsoc.2007.03.012.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 250 82 1
PDF Downloads 115 57 7