Structure and Mössbauer spectroscopy studies of mechanically activated (BiFeO3)1−x-(BaTiO3)x solid solutions


(BiFeO3)1-x-(BaTiO3)x solid solutions with x = 0.1–0.4 and 0.7 were investigated. The ceramics were prepared by mechanical activation technology and subsequent heat treatment. As was proved by X-ray diffraction, increase of BaTiO3 concentration causes a change in the crystalline structure from the rhombohedral structure characteristic of BiFeO3 to a cubic one. 57Fe Mössbauer spectroscopy allowed observation of a gradual transformation from an ordered spin structure of Fe3+ ions to the paramagnetic state with an increase of x.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Yin, Y.-W., Raju, M., Hu, W.-J., Weng, X.-J., Zou, K., Zhu, J., Li, X.-G., Zhang, Z.-D., & Li, Q. (2012). Multiferroic tunnel junctions. Front. Phys., 7, 380–385. DOI: 10.1007/s11467-012-0266-8.

  • 2. Surowiak, Z., & Bochenek, D. (2007). Ferroikowe materiały inteligentne. Elektronika, 6, 50–60.

  • 3. Catalan, G., & Scott, J. F. (2009). Physics and applications of bismuth ferrite. Adv. Mater., 21, 2463–2485. DOI: 10.1002/adma.200802849.

  • 4. Gotardo, R. A. M., Viana, D. S. F., Olzon-Dionysio, M., Souza, S. D., Garcia, D., Eiras, J. A., Alves, M. F. S., Cotica, L. F., Santos, I. A., & Coelho, A. A. (2012). Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions. J. Appl. Phys., 112(10), 104112–104112-7. DOI: 10.1063/1.4766450.

  • 5. Park, T.-J., Papaefthymiou, G. C., Viescas, A. J., Lee, Y., Zhou, H., & Wong, S. S. (2010). Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solutions nanostructures. Phys. Rev. B, 82, 024431-1-10. DOI: 10.1103/PhysRevB.82.024431.

  • 6. Yang, S.-Ch., Kumar, A., Petkov, V., & Priya, S. (2013). Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system. J. Appl. Phys., 113, 144101-1-5. DOI: 10.1063/1.4799591.

  • 7. Jartych, E., Malesa, B., Antolak-Dudka, A., & Oleszak, D. (2014). Mössbauer spectroscopy studies of multiferroic (BiFeO3)1-x-(BaTiO3)x solid solutions prepared by mechanical activation. Acta Phys. Pol. A, 125 (3), 837–839. DOI: 10.12693/APhysPolA.125.837.

  • 8. Malesa, B., & Mazurek, M. (2014). Hyperfine interactions in (BiFeO3)0.9-(BaTiO3)0.1 ceramics prepared by mechanical activation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2, 16–19. (in Polish).

  • 9. Goossenes, D. J., Weekes, C. J., Avdeev, M., & Hutchison, W. D. (2013). Crystal and magnetic structure of (1-x)BiFeO3-xSrTiO3 (x=0.2, 0.3, 0.4, and 0.8). J. Solid State Chem., 207, 111–116. DOI: 10.1016/j.jssc2013.09.024.

  • 10. Rachinger, W. A. (1948). A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum., 25, 254–260. DOI: 10.1088/0950-7671/25/7/125.

  • 11. Kowal, K., Jartych, E., Guzdek, P., Stoch, P., Wodecka-Duś, B., Lisińska-Czekaj, A., & Czekaj, D. (2013). X-ray diffraction, Mössbauer spectroscopy and magnetoelectric effect studies of (BiFeO3)s-(BaTiO3)1− x solid solutions. Nukleonika, 58 (1), 57–61.

  • 12. MacKenzie, K. J. D., Dougherty, T., & Barrell, J. (2008). The electronic properties of complex oxides of bismuth with the mullite structure. J. Eur. Ceram. Soc., 28, 499–504. DOI: 10.1016/j.jeurceramsoc.2007.03.012.


Journal + Issues