Influence of alpha and gamma radiolysis on Pu retention in the solvent TBP/kerosene

Open access


In light of the issue of radiolysis of the solvent system in PUREX process, alpha and gamma radiation stability of tributyl phosphate (TBP)/kerosene (OK) have been studied in this paper, in which 238Pu dissolved in the organic phase and 60Co are selected as alpha and gamma irradiation sources, respectively. The amount of the degradation products not easily removed after the washing process has been measured by the plutonium retention. The effects of the absorbed dose, the TBP volume fraction, the cumulative absorbed dose and the presence of UO2 2+ and Zr4+ on the radiolysis of the solvents have been investigated. The results have indicated that the Pu retention increases with the increase of the absorbed dose after alpha or gamma irradiation, and is larger for the solvent containing less TBP. There is competition between UO2 2+ and Pu4+ to complex with the degradation products, and Zr4+ accelerates the radiolysis of the system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Mincher B. J. Modolo G. & Mezyk S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch. 27(1) 1-25. DOI: 10.1080/07366290802544767.

  • 2. Tahraoui A. & Morris J. H. (1995). Decomposition of solvent extraction media during nuclear reprocessing: Literature review. Sep. Sci. Technol. 30(13) 2603-2630. DOI: 10.1080/01496399508013706.

  • 3. Schulz W. W. & Navratil J. D. (1987). Science and technology of tributyl phosphate. Boca Raton FL USA: CRC Press Inc.

  • 4. Burr J. G. (1958). The radiolysis of tributyl phosphate. Radiat. Res. 8(3) 214-221. DOI: 10.2307/3570477.

  • 5. Burger L. L. & McClanahan E. D. (1958). Gamma radiolysis. Tributyl phosphate and its diluent systems. Ind. Eng. Chem. 50(2) 153-156. DOI: 10.1021/ ie50578a025.

  • 6. Wagner R. M. Kinderman E. M. & Towle L. H. (1959). Radiation stability of organophosphorus compounds. Ind. Eng. Chem. 51(1) 45-46. DOI: 10.1021/ie50589a033.

  • 7. Wilkinson R. W. & Williams T. F. (1961). The radiolysis of tri-n-alkyl phosphates. J. Chem. Soc. 4098-4107. DOI: 10.1039/JR9610004098.

  • 8. Hardy C. J. & Scargill D. (1961). Studies on monoand di-n-butylphosphoric acids-III. The extraction of zirconium from nitrate solution by di-n-butylphosphoric acid. J. Inorg. Nucl. Chem. 17(3/4) 337-349. DOI: 10.1016/0022-1902(61)80160-7.

  • 9. Haase K. D. Schulte-Frohlinde D. Kouřīm P. & Vacek K. (1973). Low-temperature radiolysis of organic phosphates studied by electron spin resonance. Int. J. Radiat. Phys. Chem. 5(4) 351-360. DOI: 10.1016/0020-7055(73)90060-0.

  • 10. Jin H. Wu J. Zhang X. Fang X. Yao S. Zuo Z. & Lin N. (1999). The examination of TBP excited state by pulse radiolysis. Radiat. Phys. Chem. 54(3) 245-251. DOI: 10.1016/S0969-806X(98)00198-4.

  • 11. Canva J. (1965). Effects of protection and of sensibilization in the radiolytic decomposition of phosphate tributyl. Radiochim. Acta 4(2) 88-91. DOI: 10.1524/ract.1965.4.2.88.

  • 12. Barelko E. P. Solyanina I. P. & Tsvetkova Z. I. (1966). Radiation-chemical stability of TBP in solutions of hydrocarbons. Atom. Energy 21(4) 946-950. DOI: 10.1007/BF01885923.

  • 13. Bellido A. V. & Rubenich M. N. (1984). Infl uence of the diluents on the radiolytic degradation of TBP in TBP 30%(v/v)-diluent-HNO3 systems. Radiochim. Acta 36(1/2) 61-64. DOI: 10.1524/ ract.1984.36.12.61.

  • 14. Blanco R. E. Blake C. A. Jr. Davis W. Jr. & Rainey R. H. (1963). Survey of recent developments in solvent extraction with tributyl phosphate. Oak Ridge: Oak Ridge National Laboratory. (ORNL-TM-527).

  • 15. Egorov G. F. Tkhorzhnitskii G. P. Zilberman B. Ya. Shmidt O. V. & Goletskii N. D. (2005). Radiation chemical behavior of tributyl phosphate dibutylphosphoric acid and its zirconium salt in organic solutions and two-phase systems. Radiochemistry 47(4) 392-397. DOI: 10.1007/s11137-005-0108-4.

  • 16. Stieglitz L. & Becker R. (1985). Chemische und radiolytische Solventzersetzung im PUREX-prozeß. Kerntechnik 46 76-80.

  • 17. Brodda B. G. & Heinen D. (1977). Solvent performance in THTR nuclear fuel reprocessing. Part II. On the formation of dibutyl phosphoric acid by radiolytic and hydrolytic degradation of the TBP-n-paraffi n extractant. Nucl. Technol. 34(3) 428-437.

  • 18. Peterman D. R. Mincher B. J. Riddle C. L. & Tillotson R. D. (2010). Summary report on gamma radiolysis of TBP/n-dodecane in the presence of nitric acid using the radiolysis/hydrolysis test loop. Idaho Falls: Idaho National Laboratory. (INL/EXT-10-19866).

  • 19. Aneheim E. Ekberg C. Fermvik A. Foreman M. R. St. J. Grüner B. Hájková Z. & Kvičalová M. (2011). A TBP/BTBP-based GANEX separation process - Part 2: Ageing hydrolytic and radiolytic stability. Solvent Extr. Ion Exch. 29(2) 157-175. DOI: 10.1080/07366299.2011.539462.

  • 20. Becker R. Stieglitz L. & Bautz H. (1983). Untersuchung der strahlenchemischen TBP-Zersetzung unter den Bedingungen des PUREX-Prozesses. Karlsruhe: Kernforschungszentrum. (KfK-3639).

  • 21. Tallent O. K. Mailen J. C. & Pannell K. D. (1980). Purex diluent degradation. Oak Ridge: Oak Ridge National Laboratory. (ORNL/TM-8814).

  • 22. Baroncelli F. & Grossi G. (1965). The complexing power of hydroxamic acids and its effect on the behaviour of organic extractants in the reprocessing of irradiated fuels. I. The complexes between benzohydroxamic acid and zirconium iron(III) and uranium(VI). J. Inorg. Nucl. Chem. 27(5) 1085-1092. DOI: 10.1016/0022-1902(65)80420-1.

  • 23. Becker R. Baumgartner F. & Stieglitz L. (1977). Identifi cation of complexing radiolytic products of the purex systems (20% TBP-dodecane-HNO3). Karlsruhe: Kernforschungszentrum. (KfK-2304).

  • 24. Becker R. & Stieglitz L. (1973). Untersuchung der Zersetzungsprodukte im System 20% vol. Tributylphosphat- Dodekan-Salpetersäure. Karlsruhe: Kernforschungszentrum. (KfK-1373).

  • 25. Barney S. G. & Bouse D. G. (1977). Alpha radiolysis of tributyl phosphate-effect of diluents. Richland WA: Atlantic Richfi eld Hanford Company. (ARH-ST-153).

  • 26. Lloyd M. H. & Fellows R. L. (1985). Alpha radiolysis and other factors affecting hydrolysis of tributyl phosphate. Oak Ridge: Oak Ridge National Laboratory. (ORNL/TM-9565).

  • 27. Cong H. F. Li H. B. Su Z. Yuan J. Q. Liu Z. Y. Song F. L. Wang X. R. & Lin C. S. (2013). α-Radiolysis behavior of 30% TBP-kerosene-HNO3 extraction system I. Analysis of DBP and MBP in radiolysis products. J. Nucl. Radiochem. 35(4) 222-227. DOI: 10.7538/hhx.2013.35.04.0222.

  • 28. Su Z. Li H. B. Cong H. F. Song F. L. Yuan J. Q. Liu Z. Y. Wang X. R. & He H. (2013). α-Radiolysis behavior of 30% TBP-kerosene-HNO3 extraction system II. Formation of carbonyl compounds of solvent radiolysis. J. Nucl. Radiochem. 35(5) 270-274. DOI: 10.7538/hhx.2013.35.05.0270.

  • 29. Fermvik A. (2011). Comparison of the effect of alpha and gamma radiolysis on the extraction of americium by C5-BTBP in cyclohexanone. J. Radioanal. Nucl. Chem. 289(3) 811-817. DOI: 10.1007/s10967-011-1163-2.

  • 30. Mincher B. J. Mezyk S. P. Groenewold G. & Elias G. (2011). A comparison of the alpha and gamma radiolysis of CMPO. Idaho Falls: Idaho National Laboratory. (INL/EXT-11-22543).

  • 31. Mezyk S. P. Mincher B. J. Ekberg C. & Skarnemark G. (2013). Alpha and gamma radiolysis of nuclear solvent extraction ligands used for An(III) and Ln(III) separations. J. Radioanal. Nucl. Chem. 296(2) 711-715. DOI: 10. 1007/s10967-012-2036-z.

  • 32. Sharpe P. H. G. Miller A. & Bjergbakke E. (1990). Dose rate effects in the dichromate dosimeter. Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 35(4/6) 757-761. DOI: 10.1016/1359-0197(90)90311-5.

  • 33. Gao Y. Zheng W. F. Cao X. M. & Chen S. L. (2014). Gamma and alpha radiolysis of TBP solvent. Nucl. Sci. Tech. 25 S10310. DOI: 10.13538/j.1001-8042/nst.25.S10310.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 233 8
PDF Downloads 109 73 1