Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis


The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bykowski, W., Gorczyca, A., & Kubowski, J. (1992). Analiza warunków napromieniania tarcz uranowych do produkcji generatorów technetu. Otwock-Świerk: Institute of Atomic Energy.

  • 2. Eksploatacyjny raport bezpieczeństwa reaktora MARIA. (2009). Otwock-Świerk: Institute of Atomic Energy.

  • 3. Pytel, K., Jaroszewicz, J., Krzysztoszek, G., Marcinkow-ska, Z., Andrzejewski, K., & Mieleszczenko, W. (2010). Increasing Mo-99 production in the MARIA reactor. Otwock–Świerk: Institute of Atomic Energy.

  • 4. Dorosz, M., & Nowakowski, P. (2009). Pomiary hydrauliczne kanału molibdenowego z zasobnikami do napromieniania. Otwock-Świerk: Institute of Atomic Energy. (Report IEA no. B-94/2009).

  • 5. Kultys, W., Krawczyński, D., & Pytel, K. (2010). Uwolnie-nia gazów promieniotwórczych z reaktora MARIA podczas wczesnego odpowietrzania obiegu chłodzenia kanałów paliwowych. Otwock-Świerk: Institute of Atomic Energy. (Report IEA No. B-3/2010).

  • 6. Pytel, K., Mieleszczenko, W., & Frydrysiak, A. (2010). Kalibracja cieplna kanału molibdenowego. Otwock-Świerk: Institute of Atomic Energy. (Report IEA No. B-4/2010).

  • 7. Pytel, K., Jaroszewicz, J., & Mieleszczenko, W. (2010). Testowe napromienianie płytek uranowych w reaktorze MARIA. Otwock-Świerk: Institute of Atomic Energy. (Report IEA No. B-6/2010).

  • 8. Bell, M. J. (1973). ORIGEN - The ORNL Isotope Generation and Depletion Code. Oak Ridge, TN: Oak Ridge National Laboratory. (ORNL-4628).

  • 9. Deen, J. R., Woodruff, W. L., Costescu, C. I., & Leopand, L. S. (1998). WIMS-ANL User Manual. (Rev. 2). Argonne, IL: Argonne National Laboratory. (ANL/RERTR/TM-23).

  • 10. Olson, A. P. (2001). A User's Guide for the REBUS-PC Code. (Version 1.4). Argonne, IL: Argonne National Laboratory. (ANL/RERTR/TM-32).

  • 11. Briesmeister, J. (1993). MCNP - A General Monte Carlo N-Particle Transport Code. (Version 4A). Los Alamos, NM: Los Alamos National Laboratory. (LA-12625).


Journal + Issues