On the Temporal Variability of Air Pollutants’ Emissions – Case Study of Residential PM10 Emission in Silesian Metropolis

Damian Zasina 1  and Jarosław Zawadzki 1
  • 1 Warsaw University of Technology, , Poland


The paper summarizes previous studies associated with carrying out of the air pollutant emission inventories. There are presented three approaches for obtaining monthly distribution of PM10 air emission: using expert’s judgement, modelling of the heating demand, and temporal disaggregation using the heating degree days (HDD). However some differences due to not considering hot water demand, it can be effectively used for obtaining temporal, and spatiotemporal distributions of air pollutants’ air emissions necessary for air quality modelling.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bieser, J., Aulinger, A., Matthias, V., Quante, M. and Builtjes, P. (2011), ‘SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe’, Geoscientific Model Development 4, 47-68.

  • Brizio, E., Genon, G. and Caon, S. (2007), Emission inventory for an urban area: construction and use, in C.A. Brebbia, ed., ‘Air Pollution XV, WIT Transactions on Ecology and the Environment, vol. 101’, WIT Press, pp. 233-242.

  • Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Kof, E., Muntean, M., Schieberle, C., Friedrich, R. and Janssens-Maenhout, G. (2019), ‘High resolution temporal profiles in the Emissions Database for Global Atmospheric Research (EDGAR)’. Nature Scientific Data, manuscript submitted.

  • Degórska, A., Ilyin, I., Travnikov, O. and Rozovskaya, O. (2017), ‘Country-specific study of cadmium pollution in Poland: data collection, pilot results and future work’. 18th TFMM, Prague, May 2017. Available at: https://projects.nilu.no/ccc/tfmm/prague_2017/index.html.

  • Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A. and Visschedijk, A. (2011), ‘Description of current temporal emission patterns and sensitivity of predicted AQ for temporal emission patterns’. Grant agreement no.: 218793; coordinator dr. Adrian Simmons, ECMWF, UK. Available at: https://atmosphere.copernicus.eu/sites/default/fles/2019-07/MACC_TNO_del_1_3_v2.pdf.

  • Denier van der Gon, H., Kuenen, J., Janssens-Maenhout, G., Döring, U., Jonkers, S. and Visschedijk, A. (2017), ‘TNO_CAMS high resolution European emission inventory 2000-2014 for anthropogenic CO2 and future years following two different pathways’, Earth System Science Data Discussions. Manuscript under review for journal Earth Syst. Sci. Data.

  • Dopke, J. (2011), ‘Liczba stopniodni grzania dla dwudziestu sześciu miast Polski w 2010 r.’ Available at: http://www.imp.gda.pl/pea/artykuly/Dopke.pdf. [in Polish].

  • Dopke, J. (2016), ‘Zużycie energii na ogrzewanie budynków w 2015r. w miastach Polski’. Available at: http://www.cire.pl/. [in Polish].

  • Efstathiou, C., Isukapalli, S. and Georgopoulos, P. (2011), ‘A mechanistic modeling system for estimating large-scale emissions and transport of pollen and coallergens’, Atmospheric Environment 45, 2260-2276.

  • Europa-Universität Flensburg, Halmstad University and Aalborg University (2018), ‘Pan-European Thermal Atlas 4.3’. Available at: https://heatroadmap.eu/peta4/.

  • EUROSTAT (2017), ‘Heating Degree Days – Monthly 2015 – Europa EU’. Available at: http://ec.europa.eu/eurostat/web/energy/data.

  • Friedrich, R. and Reis, S., eds (2004), Emissions of Air Pollutants Measurements, Calculations and Uncertainties, Springer.

  • Guevara, M., Perez, C. and Jorba, O. (2018), ‘Development of new temporal profiles for global and regional emission inventories’. Available at: https://fairmode.jrc.ec.europa.eu/.

  • Holnicki, P. and Nahorski, Z. (2015), ‘Emission Data Uncertainty in Urban Air Quality Modeling – Case Study’, Environmental Modeling & Assessment 20, 583-597.

  • Hławiczka, S. (2008), Ocena emisji ośmiu metali ciężkich z obszaru Polski do atmosfery w latach 1980-2005, Wydawnictwo Ekonomia i Środowisko, Białystok, pp. 48-73. [in Polish].

  • IPIŚ PAN, IETU, IMGW-PIB and IOŚ-PIB (2011), ‘Analiza stanu zanieczyszczenia powietrza pyłem PM10 i PM2.5 z uwzględnieniem składu chemicznego pyłu oraz wpływu źródeł naturalnych – raport końcowy’. Available at: https://powietrze.gios.gov.pl/pjp/publications/card/2057. [in Polish].

  • Isaac, M. and van Vuuren, D. (2009), ‘Modeling global residential sector energy demand for heating and airconditioning in the context of climate change’, Energy Policy 37, 507–521.

  • Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J., Peters, J., van Aardenne, J., Monni, S., Doering, U. and Petrescu, A. (2017), ‘EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012’, Earth System Science Data 79, 1–55.

  • Lenhart, L., Heck, T. and Friedrich, R. (1997), Temporal Disaggregation of Emission Data, in A. Ebel, R. Friedrich and H. Rodhe, eds, ‘Tropospheric Modelling and Emission Estimation. Transport and Chemical Transformation of Pollutants in the Troposphere, vol. 7.’, Springer-Verlag Berlin Heidelberg GmbH, pp. 217-242.

  • Markakis, K., Poupkou, A., Melas, D. and Zerefos, C. (2010), ‘A GIS based anthropogenic PM10 emission inventory for Greece’, Atmospheric Pollution Research 1, 71-81.

  • Pham, T., Manomaiphiboon, K. and Vongmahadlek, C. (2008), ‘Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand’, Science of The Total Environment 397(1), 103-118.

  • Reis, S., Lang, M. and Vieno, M. (2009), Improving the temporal profiles of emission input data for high resolution atmospheric transport modeling – a case study for the UK, in ‘Proceedings of the 18th Annual International Emission Inventory Conference’, Baltimore, USA. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

  • Rogula-Kozłowska, W., Kozielska, B., Klejnowski, K. and Szopa, S. (2013), ‘Hazardous Compounds in Urban PM in the Central Part of Upper Silesia (Poland) in Winter’, Archives of Environmental Protection 39(1), 53-65.

  • Schaap, M., Timmermans, R., Roemer, M., Boersen, G., Builtjes, P., Sauter, F., Velders, G. and Beck, J. (2008), ‘The LOTOS-EUROS model: description, validation and latest developments’, Int. J. Environment and Pollution 32, 270-290.

  • Statistics Poland (2018), ‘Local Data Bank’. Available at: https://bdl.stat.gov.pl/BDL/.

  • Sturm, P. and Winiwarter, W. (2004), Uncertainties, validation and verification, in R. Friedrich and S. Reis, eds, ‘Emissions of Air Pollutants Measurements, Calculations and Uncertainties’, Springer, pp. 146-165.

  • Szajnowska-Wysocka, A. and Zuzańska-Żyśko, E. (2013), ‘The upper-Silesian conurbation on the path towards the “Silesia” metropolis’, Bulletin of Geography. Socio–economic Series No. 21 (2013): 111-124.

  • Trapp, W. (2010), ‘The Application of CALMET/CALPUFF Models in Air Quality Assessment System in Poland’, Archives of Environmental Protection 36(1), 63-79.

  • Xue, Y., Tian, H., Yan, J., Zhou, Z., Wang, J., Nie, L., Pan, T., Zhou, J., Hua, S., Wang, Y. and Wu, X. (2016), ‘Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China’, Environmental Pollution 213, 717-726.

  • Zasina, D.(2019), Analiza zmienności i niepewności szacowania emisji zanieczyszczeń ze spalania paliw w gospodarstwach domowych metodami geostatystycznymi, PhD thesis, Warsaw University of Technology. Available at: http://repo.bg.pw.edu.pl/index.php/pl/. [in Polish].

  • Zasina, D. and Zawadzki, J. (2016), Spatial Surrogate for Air Emissions from Small Residential Combustion – Analysis Using Scarce Top-down Estimates, in ‘Systemy Wspomagania w Inżynierii Produkcji Review of Problems and Solutions’, PA NOVA S.A., pp. 135-143. Available at: http://www.dydaktyka.polsl.pl/ROZ5/konfer/wyd/2016/3/2016_3_R_15.pdf.

  • Zasina, D. and Zawadzki, J. (2017a), ‘Mercury Air Emission from Coal-Fired Public Power Sector: Uncertainty and Its Monthly Distribution. Case Study from Poland’, Environmental Modeling & Assessment 22(6), 577-589.

  • Zasina, D. and Zawadzki, J. (2017b), ‘Spatial surrogate for domestic combustion’s air emissions: A case study from Silesian Metropolis, Poland’, Journal of the Air & Waste Management Association 67(9), 1012-1019.

  • Zasina, D. and Zawadzki, J. (2018), ‘How to distinguish dwellings taking into account the information about supply from the district heating system? CO2 emission inventory in the Silesia, Poland’, Carbon Management 9(6), 677-684.

  • Zasina, D. and Zawadzki, J. (2019), Do we need heating system schemes for emission inventories of urbanized areas? Study case from Upper Silesian Metropolitan Area, in W. Biały, A. Czerwińska-Lubszczyk and S. Czerwiński, eds, ‘Systems Supporting Production Engineering. Górnictwo – perspektywy i zagrożenia’, Vol. 8, Wydawnictwo PA NOVA S.A., pp. 87-95. Available at: http://wydawnictwo.panova.pl/attachments/article/636/R08.pdf.

  • Zawadzki, J. (2011), Metody geostatystyczne dla kierunków przyrodniczych i technicznych, Oficyna Wydawnicza Politechniki Warszawskiej. [in Polish].

  • Zheng, J., Zhang, L., Che, W., Zheng, Z. and Yin, S. (2009), ‘A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment’, Atmospheric Environment 43, 5112-5122.

  • Zuzańska-Żyśko, E. (2014), ‘The Real Estate Market in the Upper-Silesian Metropolitan Area’, Procedia – Social and Behavioral Sciences 120, 374-385.


Journal + Issues