The Influence of Temperature on Changes in the Distinguishing Features of the Usable Quality of Soybean Meal

Beata Drzewieniecka 1 , Jan Drzewieniecki 1 ,  and Miroslav Blatnický PhD 2
  • 1 Maritime University of Szczecin, , Poland
  • 2 University of Zilina,


Soybean meal is one of the fodder components. It is a by-product of the production of soybean oil. Soybean meal is a specific cargo due to changes that may occur in it during transport processes. These changes are subject to many distinguishing features of usable quality inter alia fat and fatty acid content. The temperature and size of the soybean meal particles are among the factors influencing the transformations. The article presents the results of research on soybean meal and its individual fractions and the impact of selected indicators on the quality changes of this cargo. The results depend on the conditions corresponding to those that occur during the storage, handling and transport processes. The dependencies between them have been determined. The performed research allowed to determine the type and scope of changes taking place in this cargo under the influence of temperature. The results of the study showed that as the temperature rises, the fatty acid content in the soybean meal decreased during storage for a given period of 30 days.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baize J.(2000). Global soybean meal sampling and analysis activity (Final report). Submitted to the American Soybean Association and the United Soybean Board. John C. Baize Associates.

  • Barowicz T. (1999). Tłuszcz dawki pokarmowej a wartość dietetyczna produktów pochodzenia zwierzęcego. Przegląd Hodowlany. Wars. No. 11.

  • Britzman D.G. (1994). Soybean Meal An Exellent Protein Source for Poultry Feeds. Technical Bulletin. American Soybean Association and United Soybean Board. John C. Baize and Associaties.

  • Busboom J.R., Rul D.C., Colin D., Heald T., Mazhar A. (1991). Growth, carcass characteristics and lipid composition of adipose tissue and muscle of pigs feed canola. J. Anim. Sci. 69.

  • Chachułowa J. (1997). Pasze. Praca zbiorowa. SGGW. Warszawa.

  • Drozdowski B. (1988). Lipidy. Chemia żywności. PWN. Warszawa.

  • Drzewieniecka B. (2017). Wpływ czynników egzogennych w procesie przechowywania śruty sojowej. Food Quality and Safety – Analyses-Trends-Challenges. Commodity Science in research and practice. Kraków. pp. 93-103.

  • Gunstone F.D., Norris F.A. (1983). Lipids in foods. Chemistry, biochemistry and technology. Pergamon Press. London.

  • Gunstone F.D. (1984). Reaction of oxygen and unsaturated fatty acid. JAOCS. 61.

  • Jung M.Y., Bock J.Y., Back I.O., Lee T.K., Kim Y.M. (1997). Pyrazine contents and oxidative stabilities of roasted soybean oils. Food Chemistry. Vol. 60. London. No. 1.

  • Kearney J. (2010). Food consumption trends and drivers. Phil.Trans. R. Soc.B. 365,2793-2807.

  • Kwietniak M., Harenza T. (1990). Autooksydacja pasz i przeciwutleniacze. Centralne Laboratorium Przemysłu Paszowego. Lublin.

  • Lempka A. (1985). Towaroznawstwo. Produkty spożywcze. Praca zbiorowa. PWE.

  • Mateos G.G., Garcia P., Medel P. (1996). The use fullfat soybeans in diets for poultry. Second International Fullfat Soya Conference. Processing, Quality Control, Utilization. American Soybean Association and United Soybean Board. August 21-24. Budapest.

  • Matyka S. (2000). Utlenianie tłuszczów – przeciwutleniacze. Pasze Przemysłowe. No. 4-5.

  • Mińkowski K., Grześkiewicz S., Jerzewska M. (2011). An assessment of nutritional value of plant oils with a large content of linoleic acids based on the composition of fatty acids, tocopherols and sterols. Żywność. Nauka. Technologia. Jakość. 75(2). 124-135.

  • Myer R.O., Johnson D.D., Knauft D.A., Gorbet D.W., Brendemuhl J.H., Walker W.R. (1992). Effect pf feeding high-oleic-acid peanuts to growing-finishing swine on resulting carcass and meat quality characteristics. J. Anim. Sci. 70.

  • Nederal S., Skevin D., Kraljić K., Obranowić M., Papesa S., Bataljaku A. (2012). Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. Journal of the American Oil Chemists Society, 89(9). 1763-1770.

  • Orsavova J., Misurcova L., Vavra Ambrozova J., Vicha R., Mlcek J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci. 16(6). 12871-12890.

  • Rabrenović B., Dimić E.B., Novakowić M.M., Tessević V.V., Basić N. (2014). The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT – Food Sci. Technol. 55. 521-527.

  • Sikorski Z.E. (1994). Chemiczne i funkcjonalne właściwości składników żywności. WNT.

  • Thakkar A. (2014). Study of effect of temperature on shelf stability of soybean-corn oil blends. International Journal of Theoretical & Applied Sciences. 6 (1). 14-19.

  • Vaidya B., Jong-Bang E. (2013). Effect of temperature on oxidation kinetics of walnut and grape seed oil. Food Sci. Biotechnol. 22 (S). 273-279.

  • Walczyński S. (1993). Liczba kwasowa a pastewna użyteczność tłuszczów. Pasze Przemysłowe. No 7-8.

  • Wang D., Thakker C., Liu P., Bennett G.N., San K.Y. (2015). Efficient production of free fatty acids from soybean meal carbohydrates, Biotechnol and Bioeng. 112(11), 2324-2333.


Journal + Issues