Exploring the Meaning Problem of Big and Small Data Through Digital Method Triangulation

Open access

Abstract

In this article, knowledge building through combinations of methods in a digital context is discussed and explored. Two types of digital bigger and smaller data-driven media studies are used as examples: digital focus groups and the combination of internet traffic measurements, surveys and diaries. The article proposes the concept of digital method triangulation. Digital method triangulation is argued to be a way to approach the “meaning problem” to make sense of small and big data. Digital method triangulation is argued 1) to stimulate the innovative use of known methods for unexpected dimensions within the studied topic; 2) with appropriate theoretical and meta-theoretical reflections, to provide more certainty in conclusions; and 3) to assist in constructing a more comprehensive perspective on specific analyses. The conclusion is that triangulation is even more important in the digital realm, as it facilitates dialogue between conventional and digital methods, dialogue that seems crucial to capture the complexities of the onlife.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired 23 [online]. Retrieved from https://www.wired.com/2008/06/pb-theory/ [accessed 2019 February 4].

  • Araujo T. Wonneberger A. Neijens P. & de Vreese C. (2017). How much time do you spend online? Understanding and improving the accuracy of self-reported measures of internet use. Communication Methods and Measures 11(3): 173-190.

  • Arthur P. L. & Bode K. (2014). Advancing digital humanities: Research methods theories. London: Pal-grave Macmillan.

  • Bailenson J. N. (2012). Doppelgangers: A new form of self. The Psychologist25(1): 36-39.

  • Barbour R. & Kitzinger J. (eds.) (1999). Developing focus group research: Politics theory and practice. London: Sage.

  • Berry D. (2012). Understanding digital humanities. Basingstoke: Palgrave Macmillan.

  • Boyd D. & Crawford K. (2012). Critical questions for big data: Provocations for a cultural technological and scholarly phenomenon. Information Communication & Society 15(5): 662-679.

  • Carey M. A. & Asbury J.-E. (2012). Focus group research. New York: Routledge.

  • Denzin N. K. (1970). The research act: A theoretical introduction to sociological methods. Chicago: Aldine.

  • Denzin N. K. (2010). Moments mixed methods and paradigm dialogs. Qualitative Inquiry 16: 419-427.

  • Dienlin T. & Trepte S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology 45(3): 285-297.

  • Dourish P. & Button G. (1998). On “technomethodology”: Foundational relationships between ethnomethodology and system design. Human–Computer Interaction 13(4): 395-432.

  • Fetters M. D. & Molina-Azorin J. F. (2017). The Journal of Mixed Methods Research starts a new decade: Principles for bringing in the new and divesting of the old language of the field. Journal of Mixed Methods Research 11(1): 3-10.

  • Fetveit A. (2000). Den trojanske hest: Om metodebegrepets marginalisering av humanistisk medieforskning [The Trojan Horse: About the method concepts marginalization of humanistic media research]. Norsk Medietidskrift 2: 5-27.

  • Findahl O. Lagerstedt C. & Aurelius A. (2014). Triangulation as a way to validate and deepen the knowledge about user behavior: A comparison between questionnaires diaries and traffic measurements. In G. Patriarche H. Bilandzic J. Linaa Jensen & J. Jurisic (eds.) Audience research methodologies: Between innovation and consolidation (pp. 54-72). London: Routledge.

  • Fuchs C. (2017). Social media: A critical introduction. London: Sage.

  • Geertz C. (1973). The interpretation of cultures. New York NY: Basic Books.

  • Giglietto F. Rossi L. & Bennato D. (2012). The open laboratory: Limits and possibilities of using Facebook Twitter and YouTube as a research data source. Journal of Technology in Human Services 30(3-4): 145-159.

  • Greenberg B. S. Eastin M. S. Skalski P. Cooper L. Levy M. & Lachlan K. (2005). Comparing survey and diary measures of internet and traditional media use. Communication Reports 18(1): 1-8.

  • Halkier B. (2010). Focus groups as social enactments: Integrating interaction and content in the analysis of focus group data. Qualitative Research 10(71): 71-89.

  • Hine C. (2000). Virtual ethnography. London: Sage Publications.

  • Hutchinson J. (2016). An introduction to digital media research methods: How to research and the implications of new media data. Communication Research and Practice 2(1): 1-6.

  • Iliadis A. & Russo F. (2016). Critical data studies: An introduction. Big Data & Society [online 2017].

  • Jankowski N. & Wester F. (1991 [2002]). The qualitative tradition in social science inquiry: Contributions to mass communication research. In K. B. Jensen & N. Jankowski (eds.) A handbook of qualitative methodologies for mass communication research (pp. 44-74). London: Routledge.

  • Jensen K. B. (2012). Lost found and made: Qualitative data in the study of three-step flows of communication. In I. Volkmer (ed.) The handbook of global media research (pp. 435-450). Hoboken NJ: Wiley-Blackwell.

  • Jensen K. B. (2014). Audiences audiences everywhere: Measured interpreted and imagined. In G. Patriarche H. Bilandzic J. Linaa Jensen & J. Jurisic (eds.) Audience research methodologies: Between innovation and consolidation (pp. 227-240). London: Routledge.

  • Jick T. (1979). Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly 24(4): 602-611.

  • Kåhre P. (2009). På AI-teknikens axlar: om kunskapssociologin och stark artificiell intelligens [On the shoulders of AI technology: about knowledge sociology and strong artificial intelligence]. Lund Dissertations in Sociology 1102-4712; 87. Lund: Department of Sociology Lund University.

  • Kihl M. Lagerstedt C. Aurelius A. & Ödling P. (2010). Traffic analysis and characterization of Internet user behavior. Paper presented at the conference International congress on ultra-modern telecommunications and control systems and workshop (ICUMT) 2010 October 18-20 Moscow.

  • Kitchin R. (2014). Big data new epistemologies and paradigm shifts. Big Data & Society 2014: 1-12.

  • Kitchin R. & Lauriault T. (2014). Towards critical data studies: Charting and unpacking data assemblages and their work. The Programmable City Working Paper 2. Programmable City Social Science Research Network.

  • Kitchin R. & Lauriault T. (2015). Small data in the era of big data. GeoJournal 80: 463-475.

  • Krueger R. (1994). Focus groups: A practical guide for applied research. London: Sage.

  • Ladner S. (2009). Watching the web: An ontological and epistemological critique of web-traffic measurement. In B. J. Jansen A. Spink & I. Taksa (eds.) Handbook of research on web log analysis (pp. 504-520). New York NY: Information Science Reference.

  • Lagerstedt C. Findahl O. Aurelius A. Pathirana H. & Popp Larsen C. (2012). Understanding Internet user behavior: Towards a unified methodology. International Journal of Advances in Telecommunications 5(3-4): 153-163.

  • Liamputtong P. (2011). Focus group methodology: Principles and practice. Sage: London.

  • Lijadi A. & van Schalkwyk G. (2015). Online Facebook focus group research of hard-to-reach participants. International Journal of Qualitative Methods 14(5): 1-9.

  • Liu A. (2013). The meaning of the digital humanities. PMLA 128: 409-422.

  • Lupton D. (2014). Digital sociology. London: Routledge.

  • Mackey A. & Grass S. M. (2005). Second language research: Methodology and design. London: Lawrence Erlbaum Assoc.

  • Mahrt M. & Sharkow M. (2013). The value of big data in digital media research. Journal of Broadcasting & Electronic Media 57(1): 20-33.

  • Manovich L. (2011). Trending: The promises and the challenges of big social data. Retrieved from http://manovich.net/index.php/projects/trending-the-promises-and-the-challenges-of-big-social-data [accessed 2019 February 4].

  • Manovich L. (2012). Trending: The promises and the challenges of big social data. In M. K. Gold (ed.) Debates in the digital humanities (pp. 460-475). Minneapolis MN: University of Minnesota Press.

  • Marres N. (2017). Digital sociology: The reinvention of social research. Cambridge: Polity Press.

  • Marwick A. E. & Boyd D. (2014). Networked privacy: How teenagers negotiate context in social media. New Media & Society 16(7): 1051-1067.

  • Mehl M. & Gill A. (2010). Automatic text analysis. In S. Gosling & J. Johnson (eds.) Advanced methods for conducting online behavioral research (pp. 109-127). Washington DC: American Psychological Association.

  • Menchen-Trevino E. & Karr C. (2012). Researching real-world web use with Roxy: Collecting observational web data with informed consent. Journal of Information Technology & Politics 9(3): 254-268.

  • Miller S. & Gatta J. (2006). The use of mixed methods models and designs in the human sciences: Problems and prospects. Quality & Quantity 40(4): 595-610.

  • Mills K. (2017). What are the threats and potentials of big data for qualitative research? Qualitative Research 18(6): 591-603.

  • Morley D. & Silverstone R. (2002 [1991]). Media audiences communication and context: Ethnographic perspectives on the media audience. In K. B. Jensen & N. Jankowski (eds.) A handbook of qualitative methodologies for mass communication research (pp. 149-162). London: Routledge.

  • Nyumba T. O. Wilson K. Derrick C. J. & Mukherjee N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods in Ecology and Evolution 9: 20-32.

  • Patriarche G. Bilandzic H. Linaa Jensen J. & Jurisic J. (eds.) (2014). Audience research methodologies: Between innovation and consolidation. London: Routledge.

  • Rogers R. (2013). Digital methods. Cambridge MA: The MIT Press.

  • Rogers R. (2015). Digital methods for web research. In R. Scott & S. Kosslyn (eds.) Emerging trends in the social and behavioral sciences (pp. 1-22). Hoboken NJ: John Wiley & Sons.

  • Scharkow M. (2016). The accuracy of self-reported Internet use: A validation study using client log data. Communication Methods and Measures 10(1): 13-27.

  • Schrøder K. C. Hasebrink U. Hölig S. & Barker M. (2012). Introduction: Exploring the methodological synergies of multimethod audience research. Participation Journal of Audience and Reception Studies 9(2): 643-647.

  • Simon J. & Ess C. (2015). The ONLIFE initiative: A concept reengineering exercise. Philosophy and Technology 28(1): 157-162.

  • Smith J. H. Dinev T. & Xu H. (2011). Information privacy research: An interdisciplinary review. MIS Quarterly 35(4): 989-1015.

  • Stewart D. W. & Shamdasani P. N. (2015). Focus groups: Theory and practice (3rd ed.). Los Angeles CA: Sage.

  • Stewart K. & Williams M. (2005). Researching online populations: The use of online focus groups for social research. Qualitative Research 5: 395-416.

  • Taksa I. Spink A. & Jansen B. J. (2009). Web log analysis: Diversity of research methodologies. In B. J. Jansen A. Spink & I. Taksa (eds.) Handbook of research on web log analysis (pp. 504-520). New York NY: Information Science Reference.

  • Thurmond V. A. (2001). The point of triangulation. Journal of Nursing Scholarship 33(3): 253-258.

  • Turney L. & Pocknee C. (2005). Virtual focus groups: New frontiers in research. International Journal of Qualitative Methods 4(2): 32-43.

  • Van Dijck J. (2014). Datafication dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance & Society 12(2): 197-208.

  • Vicente-Mariño M. (2014). Audience research methods: Facing the challenge of transforming audiences. In G. Patriarche H. Bilandzic J. Linaa Jensen & J. Jelena (eds.) Audience research methodologies: Between innovation and consolidation (pp. 37-53). London: Routledge.

  • Williams S. Giatsi Clausen M. Robertson A. Peacock S. & McPherson K. (2012). Methodological reflections on the use of asynchronous online focus groups in health research. International Journal of Qualitative Methods 11(4): 368-383.

Search
Journal information
Impact Factor


CiteScore 2018: 0.54

SCImago Journal Rank (SJR) 2018: 0.223
Source Normalized Impact per Paper (SNIP) 2018: 0.270


Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 191 17
PDF Downloads 150 150 11