Exploring the Meaning Problem of Big and Small Data Through Digital Method Triangulation

Open access

Abstract

In this article, knowledge building through combinations of methods in a digital context is discussed and explored. Two types of digital bigger and smaller data-driven media studies are used as examples: digital focus groups and the combination of internet traffic measurements, surveys and diaries. The article proposes the concept of digital method triangulation. Digital method triangulation is argued to be a way to approach the “meaning problem” to make sense of small and big data. Digital method triangulation is argued 1) to stimulate the innovative use of known methods for unexpected dimensions within the studied topic; 2) with appropriate theoretical and meta-theoretical reflections, to provide more certainty in conclusions; and 3) to assist in constructing a more comprehensive perspective on specific analyses. The conclusion is that triangulation is even more important in the digital realm, as it facilitates dialogue between conventional and digital methods, dialogue that seems crucial to capture the complexities of the onlife.

Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired, 23 [online]. Retrieved from https://www.wired.com/2008/06/pb-theory/ [accessed 2019, February 4].

Araujo, T., Wonneberger, A., Neijens, P. & de Vreese, C. (2017). How much time do you spend online? Understanding and improving the accuracy of self-reported measures of internet use. Communication Methods and Measures, 11(3): 173-190.

Arthur, P. L. & Bode, K. (2014). Advancing digital humanities: Research, methods, theories. London: Pal-grave Macmillan.

Bailenson, J. N. (2012). Doppelgangers: A new form of self. The Psychologist, 25(1): 36-39.

Barbour, R. & Kitzinger, J. (eds.) (1999). Developing focus group research: Politics, theory, and practice. London: Sage.

Berry, D. (2012). Understanding digital humanities. Basingstoke: Palgrave Macmillan.

Boyd, D. & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5): 662-679.

Carey, M. A. & Asbury, J.-E. (2012). Focus group research. New York: Routledge.

Denzin, N. K. (1970). The research act: A theoretical introduction to sociological methods. Chicago: Aldine.

Denzin, N. K. (2010). Moments, mixed methods, and paradigm dialogs. Qualitative Inquiry, 16: 419-427.

Dienlin, T. & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology, 45(3): 285-297.

Dourish, P. & Button, G. (1998). On “technomethodology”: Foundational relationships between ethnomethodology and system design. Human–Computer Interaction, 13(4): 395-432.

Fetters, M. D. & Molina-Azorin, J. F. (2017). The Journal of Mixed Methods Research starts a new decade: Principles for bringing in the new and divesting of the old language of the field. Journal of Mixed Methods Research, 11(1): 3-10.

Fetveit, A. (2000). Den trojanske hest: Om metodebegrepets marginalisering av humanistisk medieforskning [The Trojan Horse: About the method concepts marginalization of humanistic media research]. Norsk Medietidskrift, 2: 5-27.

Findahl, O., Lagerstedt, C. & Aurelius, A. (2014). Triangulation as a way to validate and deepen the knowledge about user behavior: A comparison between questionnaires, diaries and traffic measurements. In G. Patriarche, H. Bilandzic, J. Linaa Jensen & J. Jurisic (eds.), Audience research methodologies: Between innovation and consolidation (pp. 54-72). London: Routledge.

Fuchs, C. (2017). Social media: A critical introduction. London: Sage.

Geertz, C. (1973). The interpretation of cultures. New York, NY: Basic Books.

Giglietto, F., Rossi, L. & Bennato, D. (2012). The open laboratory: Limits and possibilities of using Facebook, Twitter and YouTube as a research data source. Journal of Technology in Human Services, 30(3-4): 145-159.

Greenberg, B. S., Eastin, M. S., Skalski, P., Cooper, L., Levy, M. & Lachlan, K. (2005). Comparing survey and diary measures of internet and traditional media use. Communication Reports, 18(1): 1-8.

Halkier, B. (2010). Focus groups as social enactments: Integrating interaction and content in the analysis of focus group data. Qualitative Research, 10(71): 71-89.

Hine, C. (2000). Virtual ethnography. London: Sage Publications.

Hutchinson, J. (2016). An introduction to digital media research methods: How to research and the implications of new media data. Communication Research and Practice, 2(1): 1-6.

Iliadis, A. & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society [online 2017].

Jankowski, N. & Wester, F. (1991 [2002]). The qualitative tradition in social science inquiry: Contributions to mass communication research. In K. B. Jensen & N. Jankowski (eds.), A handbook of qualitative methodologies for mass communication research (pp. 44-74). London: Routledge.

Jensen, K. B. (2012). Lost, found, and made: Qualitative data in the study of three-step flows of communication. In I. Volkmer (ed.), The handbook of global media research (pp. 435-450). Hoboken, NJ: Wiley-Blackwell.

Jensen, K. B. (2014). Audiences, audiences, everywhere: Measured, interpreted and imagined. In G. Patriarche, H. Bilandzic, J. Linaa Jensen & J. Jurisic (eds.), Audience research methodologies: Between innovation and consolidation (pp. 227-240). London: Routledge.

Jick, T. (1979). Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly, 24(4): 602-611.

Kåhre, P. (2009). På AI-teknikens axlar: om kunskapssociologin och stark artificiell intelligens [On the shoulders of AI technology: about knowledge sociology and strong artificial intelligence]. Lund Dissertations in Sociology, 1102-4712; 87. Lund: Department of Sociology, Lund University.

Kihl, M., Lagerstedt, C., Aurelius, A. & Ödling, P. (2010). Traffic analysis and characterization of Internet user behavior. Paper presented at the conference International congress on ultra-modern telecommunications and control systems and workshop (ICUMT), 2010, October 18-20, Moscow.

Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data & Society 2014: 1-12.

Kitchin, R. & Lauriault, T. (2014). Towards critical data studies: Charting and unpacking data assemblages and their work. The Programmable City Working Paper 2. Programmable City, Social Science Research Network.

Kitchin, R. & Lauriault, T. (2015). Small data in the era of big data. GeoJournal, 80: 463-475.

Krueger, R. (1994). Focus groups: A practical guide for applied research. London: Sage.

Ladner, S. (2009). Watching the web: An ontological and epistemological critique of web-traffic measurement. In B. J. Jansen, A. Spink & I. Taksa (eds.), Handbook of research on web log analysis (pp. 504-520). New York, NY: Information Science Reference.

Lagerstedt, C., Findahl, O., Aurelius, A., Pathirana, H. & Popp Larsen, C. (2012). Understanding Internet user behavior: Towards a unified methodology. International Journal of Advances in Telecommunications, 5(3-4): 153-163.

Liamputtong, P. (2011). Focus group methodology: Principles and practice. Sage: London.

Lijadi, A. & van Schalkwyk, G. (2015). Online Facebook focus group research of hard-to-reach participants. International Journal of Qualitative Methods, 14(5): 1-9.

Liu, A. (2013). The meaning of the digital humanities. PMLA, 128: 409-422.

Lupton, D. (2014). Digital sociology. London: Routledge.

Mackey, A. & Grass, S. M. (2005). Second language research: Methodology and design. London: Lawrence Erlbaum Assoc.

Mahrt, M. & Sharkow, M. (2013). The value of big data in digital media research. Journal of Broadcasting & Electronic Media, 57(1): 20-33.

Manovich, L. (2011). Trending: The promises and the challenges of big social data. Retrieved from http://manovich.net/index.php/projects/trending-the-promises-and-the-challenges-of-big-social-data [accessed 2019, February 4].

Manovich, L. (2012). Trending: The promises and the challenges of big social data. In M. K. Gold (ed.), Debates in the digital humanities (pp. 460-475). Minneapolis, MN: University of Minnesota Press.

Marres, N. (2017). Digital sociology: The reinvention of social research. Cambridge: Polity Press.

Marwick, A. E. & Boyd, D. (2014). Networked privacy: How teenagers negotiate context in social media. New Media & Society, 16(7): 1051-1067.

Mehl, M. & Gill, A. (2010). Automatic text analysis. In S. Gosling & J. Johnson (eds.), Advanced methods for conducting online behavioral research (pp. 109-127). Washington, DC: American Psychological Association.

Menchen-Trevino, E. & Karr, C. (2012). Researching real-world web use with Roxy: Collecting observational web data with informed consent. Journal of Information Technology & Politics, 9(3): 254-268.

Miller, S. & Gatta, J. (2006). The use of mixed methods models and designs in the human sciences: Problems and prospects. Quality & Quantity, 40(4): 595-610.

Mills, K. (2017). What are the threats and potentials of big data for qualitative research? Qualitative Research 18(6): 591-603.

Morley, D. & Silverstone, R. (2002 [1991]). Media audiences, communication and context: Ethnographic perspectives on the media audience. In K. B. Jensen & N. Jankowski (eds.), A handbook of qualitative methodologies for mass communication research (pp. 149-162). London: Routledge.

Nyumba, T. O., Wilson, K., Derrick, C. J. & Mukherjee, N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods in Ecology and Evolution, 9: 20-32.

Patriarche, G., Bilandzic, H., Linaa Jensen, J. & Jurisic, J. (eds.) (2014). Audience research methodologies: Between innovation and consolidation. London: Routledge.

Rogers, R. (2013). Digital methods. Cambridge, MA: The MIT Press.

Rogers, R. (2015). Digital methods for web research. In R. Scott & S. Kosslyn (eds.), Emerging trends in the social and behavioral sciences (pp. 1-22). Hoboken, NJ: John Wiley & Sons.

Scharkow, M. (2016). The accuracy of self-reported Internet use: A validation study using client log data. Communication Methods and Measures, 10(1): 13-27.

Schrøder, K. C., Hasebrink, U., Hölig, S. & Barker, M. (2012). Introduction: Exploring the methodological synergies of multimethod audience research. Participation Journal of Audience and Reception Studies, 9(2): 643-647.

Simon, J. & Ess, C. (2015). The ONLIFE initiative: A concept reengineering exercise. Philosophy and Technology, 28(1): 157-162.

Smith, J. H., Dinev, T. & Xu, H. (2011). Information privacy research: An interdisciplinary review. MIS Quarterly, 35(4): 989-1015.

Stewart, D. W. & Shamdasani, P. N. (2015). Focus groups: Theory and practice (3rd ed.). Los Angeles, CA: Sage.

Stewart, K. & Williams, M. (2005). Researching online populations: The use of online focus groups for social research. Qualitative Research, 5: 395-416.

Taksa, I., Spink, A. & Jansen, B. J. (2009). Web log analysis: Diversity of research methodologies. In B. J. Jansen, A. Spink & I. Taksa (eds.), Handbook of research on web log analysis (pp. 504-520). New York, NY: Information Science Reference.

Thurmond, V. A. (2001). The point of triangulation. Journal of Nursing Scholarship, 33(3): 253-258.

Turney, L. & Pocknee, C. (2005). Virtual focus groups: New frontiers in research. International Journal of Qualitative Methods, 4(2): 32-43.

Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance & Society, 12(2): 197-208.

Vicente-Mariño, M. (2014). Audience research methods: Facing the challenge of transforming audiences. In G. Patriarche, H. Bilandzic, J. Linaa Jensen & J. Jelena (eds.), Audience research methodologies: Between innovation and consolidation (pp. 37-53). London: Routledge.

Williams, S., Giatsi Clausen, M., Robertson, A., Peacock, S. & McPherson, K. (2012). Methodological reflections on the use of asynchronous online focus groups in health research. International Journal of Qualitative Methods, 11(4): 368-383.

Nordicom Review

Journal from the Nordic Information Centre for Media and Communication Research (Nordicom)

Journal Information


CiteScore 2018: 0.54

SCImago Journal Rank (SJR) 2018: 0.223
Source Normalized Impact per Paper (SNIP) 2018: 0.270


Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 32
PDF Downloads 81 81 23