Influence of Cracking on Effects of Restrained Deformations in a Post-tensioned Concrete Bridge

Kimmo Jalonen M. Sc. 1 , Joonas Tulonen M. Sc. 2 ,  und Anssi Laaksonen 3
  • 1 Tampere University of Technology, Department of Civil Engineering, 33101, Tampere, Finland
  • 2 Tampere University of Technology, Department of Civil Engineering, 33101, Tampere, Finland
  • 3 Tampere University of Technology, Department of Civil Engineering, 33101, Tampere, Finland

Abstract

Imposed and restrained deformations cause stresses in continuous concrete bridges, and in analyses of the superstructure these stresses are usually reduced to some degree due to creep and cracking of concrete. This study examines cracking and redistribution of stresses in a bridge superstructure under the loads and load combinations used in the original bridge design. The subject of this study is a three-span post-tensioned continuous concrete cantilever beam bridge. The bridge was analysed with non-linear calculation utilising the general force method and moment-curvature relationships. The analysis yielded the bending stiffness of the post-tensioned bridge superstructure as a function of bridge length under different loads. It was discovered that the secondary moment from prestressing force increased as the bending stiffness of the central span decreased due to cracking under external loads, which is not normally considered in design. The bending moment effects of linear temperature difference and support settlement decreased as expected as the superstructure bending stiffness decreased. The analysis provided new information on the effects of secondary moment from the prestressing force and on the difference between the cracked state and the linear elastic analysis of the concrete bridge superstructure.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • 1. Arnold A: “Zum Einfluss der Zwangschnittgrößen aus Temperatur bei Tragwerken aus Konstruktionsbeton mit und ohne Vorspannung,” Dissertation, Dortmund Techn. Univ., Dortumund, Germany, 2008. (In German).

  • 2. Jalonen K: “Imposed and restrained deformations on concrete bridge,” Master Thesis, Tampere University of Technology, Tampere, Finland, 2016. (In Finnish.)

  • 3. Liikenneviraston ohjeita 24/2014. 2014. Eurokoodin soveltamisohje – Siltojen kuormat ja suunnitteluperusteet NCCI 1 (5.9.2014) (Guidelines of the Finnish Transport Agency). 24/2014. 2014. Guidelines for the application of the Eurocode – Bridge loads and basis of structural design NCCI 1 (5.9.2014)). Liikennevirasto, Helsinki, Finland. (In Finnish.)

  • 4. Liikenneviraston ohjeita 25/2014. 2014. Eurokoodin soveltamisohje – Betonirakenteiden suunnittelu NCCI 2 (16.9.2014) (Guidelines of the Finnish Transport Agency 25/2014. 2014. Guidelines for the application of the Eurocode – Design of Concrete Structures NCCI 2 (16.9.2014)). Liikennevirasto, Helsinki, Finland, 2014. (In Finnish.)

  • 5. Liikenneviraston ohjeita xx/2015 Siltojen kantavuuslaskentaohje (Kommenttiversio) (Guidelines of the Finnish Transport Agency xx/2015 Guidelines for assessment of bridges (Comment version)). Liikennevirasto, Helsinki, Finland, 2014. (In Finnish.)

  • 6. SFS-EN 1991-1-5. Eurocode 1: Actions on structures. Part 1-5: General actions. Thermal actions. Suomen Standardoimisliitto ry. Finland, 2005.

  • 7. SFS-EN 1992-1-1. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings. Suomen Standardoimisliitto ry. Finland, 2005.

  • 8. SFS-EN 1991-2. Eurocode 1: Actions on structures. Part 2: Traffic loads on bridges. Suomen Standardoimisliitto ry. Finland, 2009.

  • 9. SFS-EN 1990. Eurocode – Basis of structural design. Suomen Standardoimisliitto ry. Finland, 2010.

  • 10. SFS-EN 1992-2. Eurocode 2: Design of concrete structures. Concrete bridges. Design and detailing rules. Suomen Standardoimisliitto ry. Finland, 2009.

OPEN ACCESS

Zeitschrift + Hefte

Suche