Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13

Abstract

Toxicants removal through microorganism’s action is intensely being sought due to economic reasons. The aim of this paper is to isolate a bacterium that is able to reduce molybdenum blue and at the same time can grow on the detergent Sodium Dodecyl Sulfate (SDS). Biochemical analysis resulted in a tentative identification of the bacterium as Enterobacter sp. strain Neni-13. Growth on SDS showed a 100 % removal at 800 mg/L SDS within 12 days. The removal of SDS from media was confirmed through Methylene Blue Active Substances Assay. Molybdenum reduction using sodium molybdate as a substrate was characterized using a microplate assay. The optimum pH and temperature for molybdenum reduction was between 6.0 and 6.5, and at 37 °C, respectively. Glucose was the best electron donor for molybdate reduction. Phosphate and molybdate concentrations of between 2.5 and 5.0 mM and at 15 mM, were optimal for molybdate reduction, respectively. Molybdate reduction was inhibited by the heavy metals mercury, silver, copper and chromium at 2 ppm. The ability of this bacterium to detoxify molybdate and degrade the SDS makes this bacterium an important tool for bioremediation of toxicants in soil.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ABBOUD, M.M., KHLEIFAT, K.M., BATARSEH, M., TARAWNEH, K.A., ALMUSTAFA, A., AL-MADADHAH, M.: Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb. Technol., 41, 2007, 432-439.

  • ABO-SHAKEER, L.K.A., AHMAD, S.A., SHUKOR, M.Y., SHAMAAN, N.A., SYED, M.A.: Isolation and characterization of a molybdenum-reducing Bacillus pumilus strain lbna. J. Environ. Microbiol. Toxicol., 1, 2013, 9-14.

  • AHMAD, S.A., SHUKOR, M.Y., SHAMAAN, N.A., MAC CORMACK, W.P., SYED, M.A.: Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res. Int., 2013, 2013a, 10 p.

  • AHMAD, W.A., WAN AHMAD, W.H., KARIM, N.A., SANTHANA RAJ, A.S., ZAKARIA, Z.A.: Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int. Biodeterior. Biodegrad., 85, 2013b, 571-576.

  • AMBILY, P.S., JISHA, M.S.: Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. J. Environ. Biol., 33, 2012, 717-720.

  • ANGEL, B.M., SIMPSON, S.L., JAROLIMEK, C.V., JUNG, R., WAWORUNTU, J., BATTERHAM, G.: Trace metals associated with deep-sea tailings placement at the Batu Hijau copper-gold mine, Sumbawa, Indonesia. Mar. Pollut. Bull., 73, 2013, 306-313.

  • CAMPBELL, A.M., DEL CAMPILLO-CAMPBELL, A., VILLARET, D.B.: Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc. Natl. Acad. Sci. U.S.A., 82, 1985, 227-231.

  • CAPALDI, A., PROSKAUER, B.: Beiträge zur Kenntniss der Säurebildung bei Typhus-bacillen und Bacterium coli - Eine differential-diagnostische Studie. Z. Für Hyg. Infect., 23, 1896, 452-474.

  • CHAI, B., WU, Y., LIU, P., LIU, B., GAO, M.: Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. J. Basic Microbiol., 51, 2011, 5-14.

  • CHATURVEDI, V., KUMAR, A.: Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran. J. Microbiol., 3, 2011, 47-53.

  • CLESCERI, L.S., GREENBERG, A.E., TRUSSELL, R.R.: Standard methods for the examination of water and wastewater, Port City Press, Baltimore, 1989.

  • COSTIN, S., IONUT, S.: ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015.

  • GHANI, B., TAKAI, M., HISHAM, N.Z., KISHIMOTO, N., ISMAIL, A.K.M., TANO, T., SUGIO, T.: Isolation and characterization of a Mo6+-reducing bacterium. Appl. Environ. Microbiol., 59, 1993, 1176-1180.

  • GLENN, J.L., CRANE, F.L.: Studies on metalloflavoproteins. V. The action of silicomolybdate in the reduction of cytochrome c by aldehyde oxidase. Biochim. Biophys. Acta, 22, 1956, 111-115.

  • HALMI, M.I.E., HUSSIN, W.S.W., AQLIMA, A., SYED, M.A., RUBERTO, L., MACCORMACK, W.P., SHUKOR, M.Y.: Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. J. Environ. Biol., 34, 2013, 1077-1082.

  • HALMI, M.I.E., WASOH, H., SUKOR, S., AHMAD, S.A., YUSOF, M.T., SHUKOR, M.Y.: Bioremoval of molybdenum from aqueous solution. Int. J. Agric. Biol., 16, 2014, 848-850.

  • HALMI, M.I.E., ZUHAINIS, S.W., YUSOF, M.T., SHAHARUDDIN, N.A., HELMI, W., SHUKOR, Y., SYED, M.A., AHMAD, S.A.: Hexavalent molybdenum reduction to Mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain dry14. BioMed Res. Int., 2013, 2013, 8 p.

  • HETTIARACHCHI, G.M., PIERZYNSKI, G.M., RANSOM, M.D.: In situ stabilization of soil lead using phosphorus and manganese oxide. Environ. Sci. Technol., 34, 2000, 4614-4619.

  • HOLT, J.G., KRIEG, N.R., SNEATH, P.H.A., STALEY, J.T., WILLIAMS, S.T.: Bergey’s Manual of Determinative Bacteriology, 9th Auflage, Lippincott Williams & Wilkins, 1994.

  • HOSSEINI, F., MALEKZADEH, F., AMIRMOZAFARI, N., GHAEMI, N.: Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int. J. Environ. Sci. Technol., 4, 2007, 127-132.

  • HUSAINI, A., ROSLAN, H.A., HII, K.S.Y., ANG, C.H.: Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol., 24, 2008, 2789-2797.

  • JACOBS, J.A., LEHR, J.H., TESTA, S.M.: Acid mine drainage, rock drainage, and acid sulfate soils: causes, assessment, prediction, prevention, and remediation, John Wiley & Sons, Inc., Hoboken, New Jersey 2014.

  • JURADO, E., FERNÁNDEZ-SERRANO, M., NÚÑEZ-OLEA, J., LUZÓN, G., LECHUGA, M.: Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere, 65, 2006, 278-285.

  • LIM, H.K., SYED, M.A., SHUKOR, M.Y.: Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J. Basic Microbiol., 52, 2012, 296-305.

  • LLOVERA, S., BONET, R., SIMON-PUJOL, M.D., CONGREGADO, F.: Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl. Environ. Microbiol., 59, 1993, 3516-3518.

  • LOSI, M.E., FRANKENBERGER JR., W.T.: Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a-1: Reduction of selenate to selenite. Environ. Toxicol. Chem., 16, 1997, 1851-1858.

  • MARGESIN, R., SCHINNER, F.: Biodegradation of the anionic surfactant sodium dodecyl sulfate at low temperatures. Int. Biodeterior. Biodegrad., 41, 1998, 139-143.

  • MASDOR, N., ABD SHUKOR, M.S., KHAN, A., BIN HALMI, M.I.E., ABDULLAH, S.R.S., SHAMAAN, N.A., SHUKOR, M.Y.: Isolation and characterization of a molybdenum-reducing and SDS-degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment. Biodiversitas, 16, 2015, 238-246.

  • MYERS, C.R., CARSTENS, B.P., ANTHOLINE, W.E., MYERS, J.M.: Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol., 88, 2000, 98-106.

  • NEUNHÄUSERER, C., BERRECK, M., INSAM, H.: Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water. Air. Soil Pollut., 128, 2001, 85-96.

  • OTHMAN, A.R., BAKAR, N.A., HALMI, M.I.E., JOHARI, W.L.W., AHMAD, S.A., JIRANGON, H., SYED, M.A., SHUKOR, M.Y.: Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res. Int., 2013, 2013, 9 p.

  • SHARVELLE, S.E., GARLAND, J., BANKS, M.K.: Biodegradation of polyalcohol ethoxylate by a wastewater microbial consortium. Biodegradation, 19, 2008, 215-221.

  • SHUKOR, M.S., SHUKOR, M.Y.: A microplate format for characterizing the growth of molybdenum-reducing bacteria. J. Environ. Microbiol. Toxicol., 2, 2014, 42-44.

  • SHUKOR, M.Y., AHMAD, S.A., NADZIR, M.M.M., ABDULLAH, M.P., SHAMAAN, N.A., SYED, M.A.: Molybdate reduction by Pseudomonas sp. strain DRY2. J. Appl. Microbiol., 108, 2010, 2050-2058.

  • SHUKOR, M.Y., HALMI, M. I.E., RAHMAN, M.F.A., SHAMAAN, N.A., SYED, M.A.: Molybdenum reduction to molybdenum blue in Serratia sp. strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme. BioMed Res. Int., 2014, 2014, 8 p.

  • SHUKOR, M.Y., RAHMAN, M.F., SHAMAAN, N.A., SYED, M.S.: Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J. Basic Microbiol., 49, 2009, S43-S54.

  • SIMS, R.P.A.: Formation of heteropoly blue by some reduction procedures used in the micro-determination of phosphorus. The Analyst, 86, 1961, 584-590.

  • STONE, J., STETLER, L.: Environmental impacts from the North Cave Hills abandoned uranium mines, South Dakota. In: Merkel, B., Hasche-Berger, A. (Eds.): Uranium, mining and hydrogeology, Springer Berlin Heidelberg, 2008, 371-380.

  • SYED, M.A., MAHAMOOD, M., SHUKOR, M.Y., SHAMAAN, N.A.: Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1. Aust. J. Basic Appl. Sci., 4, 2010, 5000-5011.

  • TUCKER, M.D., BARTON, L.L., THOMSON, B.M.: Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans. J. Environ. Qual., 26, 1997, 1146-1152.

OPEN ACCESS

Journal + Issues

Search