Comparison Of Cd And Zn Accumulation In Tissues Of Different Vascular Plants: A Radiometric Study

Open access


The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L.), celery (Apium graveolens L.), maize (Zea mays L.), giant reed (Arundo donax L.), and alpine pennycress (Noccaea caerulescens L.) under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR) [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA). According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation and other positive parameters for their utilization in phytoremediation processes and techniques.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ATAFAR Z. MESDAGHINIA A.R. NOURI J. HOMAEE M. YUNESIAN M. AHMADIMOGHADDAM M. MAHVI A.H.: Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 160 2010 83-89.

  • ATSDR (Agency for Toxic Substances and Disease Registry): Priority list of hazardous substances U.S. Department of Health and Human Services Atlanta GA USA 2013. Available from: <>.

  • BAUDDH K. SINGH K. SINGH B. SINGH R.P.: Ricinus communis: A robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84 2015 640-652.

  • BERNARD A.: Cadmium & its adverse effects on human health. Indian J. Med. Res. 128 2008 557-564.

  • CHIRAKKARA R.A. REDDY K.R.: Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 85 2015 265-274.

  • CLEMENS S. AARTS M.G.M. THOMINE S. VERBRUGGEN N.: Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 18 2013 92-99.

  • DÜREŠOVÁ Z. ŠUŇOVSKÁ A. HORNÍK M. PIPÍŠKA M. GUBIŠOVÁ M. GUBIŠ J. HOSTIN S.: Rhizofiltration potential of Arundo donax in Cd and Zn removing from contaminated wastewaters. Chem. Pap. 68 2014 1452-1462.

  • EC (European Commission): Decision No. 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field ofwater policy and amending Directive 2000/60/EC. Off. J. Eur. Commun. L 331 2001 1-5.

  • EHSAN S. ALI S. NOUREEN S. MAHMOOD K. FARID M. ISHAQUE W. SHAKOOR M.B. RIZWAN M.: Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 106 2014 164–172.

  • ETTLER V.: Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2015 (in Press).

  • GILL S.S. HASANUZZAMAN M. NAHAR K. MACOVEI A. TUTEJA N.: Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol. Biochem. 63 2013 254-261.

  • GULDANOVÁ J. HORNÍK M. MAREŠOVÁ J. PIPÍŠKA M. AUGUSTÍN J.: Bioaccumulation and distribution of 137Cs in tobacco cultivated under hydroponic conditions. Nova Biotechnol. 10-2 2010 95-106.

  • GULDANOVÁ J. HORNÍK M. MAREŠOVÁ J. PIPÍŠKA M. AUGUSTÍN J. LESNÝ J.: Uptake of zinc organic complexes by roots of vascular plants. In: BEHL R.K. BONA L. PAUK J. MERBACH W. VEHA A. (Eds.) Crop science and technology for food security bioenergy and sustainability Agrobios Jodhpur India 2012 301–308.

  • HAWRYLAK-NOWAK B. DRESLER S. WÓJCIK M.: Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci. Hortic. 172 2014 10-18.

  • HAWRYLAK-NOWAK B. DRESLER S. MATRASZEK R.: Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol. Biochem. 94 2015 225-234.

  • HOAGLAND D.R.: Optimum nutrient solution for plants. Science 52 1920 562-564.

  • HORNÍK M. GULDANOVÁ J. PIPÍŠKA M. MAREŠOVÁ J. AUGUSTÍN J.: Effect of chelating agents on phytotoxicity and bioaccumulation of heavy metals in vascular plants. Nova Biotechnol. 9-3 2009 271-278.

  • HORNÍK M. PIPÍŠKA M. VRTOCH Ľ. AUGUSTÍN J. LESNÝ J.: Bioaccumulation of 137Cs and 60Co by Helianthus annuus. Nukleonika 50 2005 S49-S52.

  • HORNÍK M. PIPÍŠKA M. SEKÁČOVÁ J. AUGUSTÍN J.: Determination of long distance transport of Cs+ Co2+ and Zn2+ ions in vascular plants by autoradiography and gamma-spectrometry. Nova Biotechnol. 7-1 2007 33-40.

  • HORNÍK M. PIPÍŠKA M. VRTOCH Ľ. SEKÁČOVÁ J. AUGUSTÍN J. LESNÝ J.: Influence of complexing ligands on Zn uptake and translocation in tobacco and celery plants. Acta Agron. Ovar. 50 2008 65-71.

  • IANNONE M.F. GROPPA M.D. BENAVIDES M.P.: Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ. Exp. Bot. 109 2015 201-211.

  • KABATA-PENDIAS A. MUKHERJEE A.B.: Trace elements from soil to human First Edition Springer-Verlag Berlin Heidelberg Germany 2007 550 p.

  • LAMBERS H. CHAPIN III F.S. PONS T.L.: Plant physiological ecology Second Edition Springer-Verlag New York USA 2008 605 p.

  • LIANG Z. DING Q. WEI D. LI J. CHEN S. MA Y.: Major controlling factors and predictions for cadmium transfer from the soil into spinach plants. Ecotoxicol. Environ. Saf. 93 2013 180-185.

  • LIU H. WANG H. MA Y. WANG H. SHI Y.: Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere 144 2016 1960-1965.

  • MCLAUGHLIN M.J. PARKER D.R. CLARKE J.M.: Metals and micronutrients – food safety issues. Field Crops Res. 60 1999 143-163.

  • MURASHIGE T. SKOOG F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 1962 473-497.

  • PANDEY V.C. BAJPAI O. SINGH N.: Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54 2016 58-73.

  • POŁEĆ-PAWLAK K. RUZIK R. ABRAMSKI K. CIURZYŃSKA M. GAWROŃSKA H.: Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Anal. Chim. Acta 540 2005 61-70.

  • QUEZADA-HINOJOSA R. FÖLLMI K.B. GILLET F. MATERA V.: Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel Swiss Jura Mountains. Catena 124 2015 85-96.

  • SALT D.E. PRINCE R.C. BAKER A.J.M. RASKIN I. PICKERING I.J.: Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol. 33 1999 713-717.

  • ŠUŇOVSKÁ A. HORNÍK M. MAREŠOVÁ J. PIPÍŠKA M. AUGUSTÍN J.: 137Cs uptake and translocation in leafy vegetable: A study with Lactuca sativa L. grown under hydroponic conditions. Nova Biotechnol. Chim. 11 2012 153-166.

  • TAVAREZ M. MACRI A. SANKARAN R.P.: Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat. Plant Physiol. Biochem. 97 2015 461-469.

  • VISIOLI G. MARMIROLI N.: The proteomics of heavy metal hyperaccumulation by plants. J. Proteomics 79 2013 133-145.

  • WHITE P.J. BROWN P.H.: Plant nutrition for sustainable development and global health. Ann. Bot. 105 2010 1073-1080.

  • WÓJCIK M. TUKIENDORF A.: Cadmium uptake localization and detoxificationin Zea mays. Biol. Plant. 49 2005 237-245.

  • ZHAO F.J. JIANG R.F. DUNHAM S.J. MCGRATH S.P.: Cadmium uptake translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. 172 2006 646-654.

  • ZHANG H. GUO Q. YANG J. SHEN J. CHEN T. ZHU G. CHEN H. SHAO C.: Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation. Ecotoxicol. Environ. Saf. 120 2015 184-192.

Journal information
Impact Factor

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.173
Source Normalized Impact per Paper (SNIP) 2018: 0.288

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 145 6
PDF Downloads 103 63 2