The Effects of Combinatorial Chemistry and Technologies on Drug Discovery and Biotechnology – a Mini Review

Pierfausto Seneci 1 , 2 , Giorgio Fassina 3 , Vladimir Frecer 4 , 5 , and Stanislav Miertus 5 , 6
  • 1 Dipartimento di Chimica, Università degli Studi di Milano, Viale Golgi 19, I-20133 Milan, Italy
  • 2 CISI scrl, Via Fantoli 16/15, I-20138 Milan, Italy
  • 3 Xeptagen S.p.A., Via delle Industrie 9, Marghera (VE) Italy
  • 4 Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia
  • 5 International Centre for Applied Research and Sustainable Technology (ICARST), Jamnickeho 18, SK-84104 Bratislava, Slovakia
  • 6 Faculty of Natural Sciences, University of SS. Cyril & Methodius, Nam. J. Herdu 2, SK-91701 Trnava, Slovakia

Abstract

The review will focus on the aspects of combinatorial chemistry and technologies that are more relevant in the modern pharmaceutical process. An historical, critical introduction is followed by three chapters, dealing with the use of combinatorial chemistry/high throughput synthesis in medicinal chemistry; the rational design of combinatorial libraries using computer-assisted combinatorial drug design; and the use of combinatorial technologies in biotechnology. The impact of “combinatorial thinking” in drug discovery in general, and in the examples reported in details, is critically discussed. Finally, an expert opinion on current and future trends in combinatorial chemistry and combinatorial technologies is provided.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ACEVEDO-ROCHA, CG., HOEBENREICH, S., REETZ, MT.: Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol. Biol., 1179,2014, 103-28.

  • AGRAFIOTIS, D. K.: Multiobjective optimization of combinatorial libraries. J. Comput. Aided. Mol. Des., 16, 2002, 335-356.

  • ALDANA-MASANGKAY, G. I., RODRIGUEZ-GONZALEZ, A., LIN, T., IKEDA, A.K., HSIEH, Y.T., KIM, Y.M., LOMENICK, B., OKEMOTO, K., LANDAW, E.M., WANG, D., MAZITSCHEK, R., BRADNER, J.E., SAKAMOTO, K.M.: Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk. Lymphoma, 52, 2011, 1544−1555.

  • ASHOK, B.T., DAVID, L., CHEN, Y.G., GARIKAPATY, V.P., CHANDER, B., KANDUC, D., MITTELMAN, A., TIWARI, R.K.: Peptide mimotopes of oncoproteins as therapeutic agents in breast cancer. Int. J. Mol. Med., 11, 2003, 465-71.

  • BANFI, L., RIVA, R.: The Passerini reaction. Org. React., 65, 2005, 1-140.

  • BEAVERS, M.P., CHEN, X.: Structure-based combinatorial library design: methodologies and applications. J. Mol. Graph. Model., 20, 2002, 463-468.

  • BIENAYMÉ, H., BOUZID, K.: A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed., 37, 1998, 2234-2237.

  • BLACKWELL, H. E., PEREZ, L., STAVENGER, R. A., STAVENGER, R.A., TALLARICO, J.A., COPE EATOUGH, E., FOLEY, M.A., SCHREIBER, S.L.: A one bead, one-stock solution approach to chemical genetics: part 1. Chem. Biol., 8, 2001, 1167-1182.

  • BLUNDELL, T. L., PATEL, S.: High-throughput X-ray crystallography for drug discovery. Curr. Opin. Pharmacol., 4, 2004, 490-496.

  • BOENS, N., LEEN, V., DEHAEN, W.: Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41, 2012, 1130-1172.

  • BÖHM, H. J., BANNER, D. W., WEBER, L.: Combinatorial docking and combinatorial chemistry: design of non-peptide thrombin inhibitors. J. Comput.- Aided Mol. Design, 13, 1999, 51-56.

  • BÖHM, H. J., STAHL, M.: Structure-based library design: molecular modelling merges with combinatorial chemistry. Curr. Opin. Chem. Biol., 4, 2000, 283-286.

  • BUNIN, B. A., PLUNKETT, M. J., ELLMAN, J. A.: The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. U.S.A., 91, 1994, 4708-4712.

  • BUTZ, S., RAWER, S., RAPP, W., BIRSNER, U.: Immunization and affinity purification of antibodies using resin-immobilized lysine-branched synthetic peptides. Pept. Res., 7, 1994, 20-23.

  • CASALI, P., SCHETTINO, E. W. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 1996, 210, 167-179.

  • CLEMONS, P. A., KOEHLER, A. N., WAGNER, B. K., SPRIGINGS, T.G., SPRING, D.R., KING, R.W., SCHREIBER, S.L., FOLEY, M.A.: A one-bead, one-stock solution approach to chemical genetics: part 2. Chem. Biol., 8, 2001, 1183-1195.

  • COBB, R. E., CHAO, R., ZHAO, H.: Directed evolution: Past, present, and future. AIChE J., 59, 2013, 1432-1440.

  • CORTHALS, G. L., WASINGER, V. C., HOCHSTRASSER, D. F., SANCHEZ, J. C.: The dynamic range of protein expression: A challenge for proteomic research. Electrophoresis, 21, 2000, 1104-1115.

  • D’YDEWALLE, C., KRISHNAN, J., CHIHEB, D. M., Van DAMME, P., IROBI, J., KOZIKOWSKI, A.P., VANDEN BERGHE, P., TIMMERMAN, V., ROBBERECHT, W., Van DEN BOSCH, L.: HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med., 17, 2011, 968-974.

  • DAWIS, I. W., BAKER, D.: RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol., 385, 2009, 381-392.

  • DE ZOETEN, E. F., WANG, L., BUTLER, K., BEIER, U.H., AKIMOVA, T., SAI, H., BRADNER, J.E., MAZITSCHEK, R., KOZIKOWSKI, A.P., MATTHIAS, P., HANCOCK, W.W.: Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol. Cell. Biol., 31, 2011, 2066-2078.

  • DOMINGUEZ, J. M.: High throughput combinatorial methods for heterogeneous catalysts design and development. In: Fassina G, Miertus S, Eds. Combinatorial Chemistry and Technologies, 2nd Edition. CLC Press LCC, Boca Raton, 2005, 369-388.

  • DUFFY, B. C., ZHU, L., DECORNEZ, H., KITCHEN, D. B.: Early phase drug discovery: Cheminformatics and computational techniques in identifying lead series. Bioorg. Med. Chem., 20, 2012, 5324-5342.

  • ER, J. C., TANG, M. K., CHIA, C. G., LIEW, H., VENDRELL, M., CHANG, Y-T.: MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem. Sci., 4, 2013, 2168-2176.

  • ERLANSON, D. A.: Fragment-based lead discovery: a chemical update. Curr. Opin. Biotech., 17, 2006, 643-652.

  • ESTIU, G., GREENBERG, E., HARRISON, C. B., KWIATKOWSKI, N.P., MAZITSCHEK, R., BRADNER, J.E., WIEST, O.: Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J. Med. Chem., 51, 2008, 2898-2906.

  • FASSINA, G., SCARDINO, P., RUVO, M., FUCILE, P., AMODEO, P., CASSANI, G.: Synthesis of conformationally constrained dimeric peptide libraries. In: Maia H, Ed. Peptides 1994. Leiden, ESCOM, 1995, 489-490.

  • FASSINA, G., VERDOLIVA, A., ODIERNA, M. R., RUVO, M., CASSINI, G.: Protein A mimetic peptide ligand for affinity purification of antibodies. J. Mol. Recognit., 9, 1996, 564-569.

  • FASSINA, G.: Oriented immobilization of peptide ligands on solid supports. J. Chromatogr., 591, 1992, 99-106.

  • FODOR, S. P. A., READ, J. L., PIRRUNG, M. C., STRYER, L., LIU, A. T., SOLAS, D.: Light-directed, spatially addressable parallel chemical synthesis. Science, 251,1991, 767.

  • FOURNIER, A., COUVINEAU, A., LABURTHE, M.: Synthesis of a hydrophilic affinity matrix for the purification of the vasoactive intestinal peptide receptor. Anal. Biochem., 211,1992, 305-310.

  • FRECER, V., BURELLO, E., MIERTUS, S.: Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Bioorg. Med. Chem., 13, 2005, 5492-5501.

  • FRECER, V., MEGNASSAN, E., MIERTUS, S.: Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Eur. J. Med. Chem., 44, 2009, 3009-3019.

  • FRECER, V., MIERTUS, S., TOSSI, A., ROMEO, D.: Rational design of inhibitors for drug-resistant HIV-1 aspartic protease mutants. Drug Des. Disc., 15, 1998, 211-231.

  • FRECER, V., MIERTUS, S.: Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease. J. Comp.-Aided Mol. Des., 24, 2010, 195-212.

  • FRECER, V., SENECI, P., MIERTUS, S.: Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of mycobacterium tuberculosis thymidine monophosphate kinase. J. Comp.-Aided Mol. Des., 25,2011, 31-49.

  • FURKA, A., SEBESTYEN, F., ASGEDOM, M., DIBO, G.: Cornucopia of peptide synthesis. Highlights of Modern Biochemistry, Proceedings of the 14th International Congress of Biochemistry, VSP. Utrecht, The Netherland, 1988, Vol. 5, p. 47.

  • FURKA, A., SEBESTYEN, F., ASGEDOM, M., DIBO, G.: General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Peptide Protein Res., 37, 1991, 487-493.

  • GAZOULI, M., HAN, Z., PAPADOPOULOS, V.: Identification of a peptide antagonist to the peripheral type benzodiazepine receptor (PBR) that inhibits hormone stimulated Leydig cell steroid formation. J. Pharmacol. Exp. Ther., 303, 2002, 627-632.

  • GEYSEN, H. M., BARTELING, S. J., MELOEN, R. H.: Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci. USA, 82, 1985, 178-182.

  • GEYSEN, H. M., MELOEN, R. H., BARTELING, S. J.: Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA., 81, 1984, 3998-4002.

  • GILLET, V., KHATIB, W., WILLETT, P., FLEMING, P.J, GREEN, D.V.: Combinatorial library design using a multiobjective genetic algorithm. J. Chem. Inf. Comput. Sci., 42, 2002, 375-385.

  • GILLET, V. J.: Reactant- and product-based approaches to the design of combinatorial libraries. J. Comp. Aided Mol. Des., 16, 2002, 371-380.

  • GREENBERG, A. H.: Antibodies and natural immunity. Biomed. Pharmacother., 39, 1985, 4-6.

  • GRIFFITH, R., LUU, T. T., GARNER, J., KELLER, P. A.: Combining structurebased drug design and pharmacophores. J. Mol. Graph. Model., 23, 2005, 439-446.

  • GROZINGER, C. M., SCHREIBER, S. L.: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol., 9, 2002, 3-16.

  • HAGGARTY, S. J., KOELLER, K. M., WONG, J. C., GROZINGER, C.M., SCHREIBER, S.L.: Domain-selective small molecule inhibitor of HDAC6- mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA, 100, 2003, 4389-4394.

  • HAGGARTY, S. J., KOELLER, K. M., WONG, J. C., BUTCHER, R.A., SCHREIBER, S.L.: Multidimensional chemical genetic analysis of diversityoriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol., 10, 2003, 383-396.

  • HAJDUK, P. J., GREER, J. A.: decade of fragment-based drug design: strategic advances and lesions learned. Nat. Rev. Drug Discov., 6, 2007, 211-219.

  • HEIKAMP, K., BAJORATH, J.: The future of virtual compound screening. Chem. Biol. Drug Des., 81, 2013, 33-40.

  • HOUGHTEN, R. A., PINILLA, C., BLONDELLE, S. E., APPEL, J. R., DOOLEY, C. T., CUERVO, J. H.: Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 354, 1991, 84-86.

  • HOUGHTEN, R. A.: General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA, 82, 1985, 5131-5135.

  • HUBBARD, R. E., CHEN, I., DAVIS, B.: Informatics and modeling challenges in fragment-based drug discovery. Curr. Opin. Drug. Discov. Devel., 10, 2007, 289-297.

  • JACOBSEN, B., GÅRDSVOLL, H., FUNCH, G. J., ØSTERGAARD, S., BARKHOLT, V., PLOUG, M.: One-step affinity purification of recombinant urokinase-type plasminogen activator receptor using a synthetic peptide developed by combinatorial chemistry. Prot. Expr. Purific., 52, 2007, 286-296.

  • JOSE, J.: Autodisplay: efficient bacterial surface display of recombinant proteins. Appl. Microbiol. Biot., 69, 2006, 607-617.

  • KALIN, J. H., BERGMAN, J. A.: Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J. Med. Chem., 56, 2013, 6297-6313.

  • KASAIAN, M. T., CASALI, P.: Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity, 15, 1993, 315-329.

  • KASAIAN, M. T., IKEMATSU, H., CASALI, P.: Identification and analysis of a novel human surface CD5- B lymphocyte subset producing natural antibodies. J. Immunol., 148, 1992, 2690-2702.

  • KIJIMA, M., YOSHIDA, M., SUGITA, K., HORINOUCHI, S., BEPPU, T.: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem., 268, 1993, 22429-22435.

  • KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 3, 2004, 935-949.

  • KOCHETKOV, N. K.: Catalytic antibodies: prospects for the use in organic synthesis. Russ. Chem. Rev., 67, 1998, 999-1029.

  • KODADEK, T.: The rise, fall and reinvention of combinatorial chemistry. Chem. Commun., 47, 2011, 9757-9763.

  • KUBINYI, H.: The design of combinatorial libraries. Drug Discov. Today, 7, 2002, 503-504.

  • LAM, K. S., SALMON, S. E., HERSH, E. M., HRUBY, V. J., KAZMIERSKI, W. M., KNAPP, R. J.: A new type of synthetic peptide library for identifying ligandbinding activity. Nature, 354, 1991, 82-84.

  • LEACH, A. R., HANN, M. M. The in silico world of virtual libraries. Drug Discov. Today 2000, 5, 326-336.

  • LEE, J. S., KANG, N. Y., KIM, Y. K., SAMANTA, A., FENG, S., KIM, H.K., VENDRELL, M., PARK, J.H., CHANG, Y.T.: Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J. Am. Chem. Soc., 131, 2009, 10077-10082.

  • LEE, J. S., KIM, H. K., FENG, S., VENDRELL, M., CHANG, Y-T.: Accelerating fluorescent sensor discovery: unbiased screening of a diversity-oriented BODIPY library. Chem. Commun., 47, 2011, 2339−2341.

  • LEVIN, A. M., WEISS, G. A.: Optimizing the affinity and specificity of proteins with molecular display. Mol. Bio. Syst., 2, 2006, 49-57.

  • LOPEZ, M. F.: Better approaches to finding the needle in a haystack: Optimizing proteome analysis through automation. Electrophoresis, 21, 2000, 1082-1093.

  • LOUDET, A., BURGESS, K.: BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev., 107, 2007, 4891-4932.

  • MA, B., KUMAR, S., TSAI, C. J., NUSSINOV, R.: Folding funnels and binding mechanisms. Protein Eng., 12, 1999, 713-720.

  • MAIER, W., STOEWE, K., SIEG, S.: Combinatorial and high-throughput materials science. Angew. Chem., Int. Ed., 46, 2007, 6016-6067.

  • MARINO, M., CAMPANILE, M. N., IPPOLITO, A., SCARALLO, A., RUVO, M., FASSINA, G.: Structurally constrained selective ligands for mouse immunoglobulins. In: S. BAJUSZ and F. HUDECZ, Eds. Peptides 98, Academia Kiado, Budapest, 1999, 776-777.

  • MARINO, M., RUVO, M., DE FALCO, S., FASSINA, G.: Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulinbinding peptide. Nat. Biotechnol., 18, 2000, 735-739.

  • MCINNES, C.: Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol., 11, 2007, 494-502.

  • MENEGATTI, S., WARD, K. L., NAIK, A. D., KISH, W. S., BLACKBURN, R. K., CARBONELL, R. G.: Reversible cyclic peptide libraries for the discovery of affinity ligands. Anal. Chem., 85, 2013, 9229-9237.

  • MERRITT A.: High throughput chemistry in drug discovery. RSC Drug Discovery Series, 2012, 11 (New synthetic technologies in medicinal chemistry), 6-41.

  • MORTIER, J., RAKERS, C., FREDERICK, R., WOLBER, G.: Computational tools for in silico fragment-based drug design. Curr. Top. Med. Chem., 12, 2012, 1935-1943.

  • NAIK, A. D., MENEGATTI, S., GURGEL, P. V., CARBONELL, R. G.: Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media. J. Chromatogr. A, 1218, 2011, 1691-700.

  • NIXON, A.E.: Phage Display as a Tool for Protease Ligand Discovery. Curr. Pharm. Biotechnol., 3, 2002, 1-12.

  • NOPPE, W., PLIEVA, F. M., GALAEV, I. Y., VANHOORELBEKE, K., MATTIASSON, B., DECKMYN, H.: Immobilised peptide displaying phages as affinity ligands: Purification of lactoferrin from defatted milk. J. Chromatogr. A, 1101, 2006, 79-85.

  • OPREA, T. I.: Current trends in lead discovery: are we looking forthe appropriate properties? J. Comput. Aided Mol. Des., 16, 2002, 371-380.

  • PALOMBO, G., ROSSI, M., CASSANI, G., FASSINA, G.: Affinity purification of mouse monoclonal IgE using a protein A mimetic ligand (TG19318) immobilized on solid supports. J. Mol. Recognit., 11, 1998, 247-249.

  • RASMUSSEN, U. B., SCHREIBER, V., SCHULTZ, H., MISCHLER, F., SCHUGHART, K.:Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther., 9, 2002, 606-612.

  • ROLLINGER, J. M., STUPPNER, H., LANGER, T.: Virtual screening for the discovery of bioactive natural products. Prog. Drug Res., 65, 2008, 213-249.

  • ROSE, S., STEVENS, A.: Computational design strategies for combinatorial libraries. Curr. Opin. Chem. Biol., 7, 2003, 331-339.

  • RUNGROTMONGKOL, T., FRECER, V., DE-EKNAMKUL, W., HANNONGBUA, S., MIERTUS, S.: Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antivir. Res., 82, 2009, 51-58.

  • RUPASINGHE, C. N., SPALLER, M. R.: The interplay between structure-based design and combinatorial chemistry. Curr. Opin. Chem. Biol., 10, 2006, 188-193.

  • RUVO, M., SCARDINO, P., CASSANI, G., FASSINA, G.: Facile manual synthesis of peptide libraries. Protein Pept. Lett., 1, 1994, 187-192.

  • SANCINETO, L., MASSARI, S., IRACI, N., TABARRINI, O.: From small to powerful: the fragments universe and its "chem-appeal". Curr. Med. Chem., 20, 2013, 1355-1381.

  • SHERMAN, W., BEARD, H. S., FARID, R.: Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 67, 2006, 83-84.

  • SINKO, W., LINDERT, S., MCCAMMON, A. J.: Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug. Des., 81, 2013, 41-49.

  • SMITH, G. P., PETRENKO, V. A.: Phage display. Chem. Rev., 97, 1997, 391-410.

  • SMITH, G. P.: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1985, 1315-1317.

  • STEMBERG, N., HOESS, R. H.: Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Nat. Acad. Sci. USA, 92, 1995, 1609-1613.

  • STERNSON, S. M., WONG, J. C., GROZINGER, C. M., SCHREIBER, S. L.: Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett., 3, 2001, 4239-4242.

  • STRATMANN, J., STROMMENGER, B., STEVENSON, K., GERLACH, G. F.: Development of a peptide-mediated capture PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. J. Clin Microb., 40, 2002, 4244-4250.

  • TAM, J. P.: Synthetic peptide vaccine design: synthesis and properties of a highdensity multiple antigenic peptide system. Proc. Natl. Acad. Sci. USA, 85, 1988, 5409-5413.

  • TANAKA, F.: Catalytic antibodies as designer proteases and esterases. Chem. Rev., 102, 2002, 4885-4905.

  • TIAM, F., TSAO, M. L., SCHULTZ, P. G.: A phage display system with unnatural amino acids. J. Am. Chem. Soc., 126, 2004, 15962-15963.

  • TINOCO, L. W., DA SILVA, J. R. A., LEITE, A., VALENTE, A.P., ALMEIDA, F.C.: NMR structure of PW2 bound to SDS micelles. A tryptophan-rich anticoccidial peptide selected from phage display libraries. J. Biol Chem., 277, 2002, 36351-36356.

  • TSUJI, N., KOBAYASHI, M., NAGASHIMA, K., WAKISAKA, Y., KOIZUMI, K.: A new antifungal antibiotic, trichostatin. J. Antibiot., 29, 1976, 1-6.

  • UGI, I., GOEBEL, M., GRUBER, B., HEILINGBRUNNER, M., HEIß, C., HÖRL, W., KERN, O., STARNECKER, M., DÖMLING A.: Molecular libraries in liquid phase via Ugi-MCR. Res. Chem. Interm., 22, 1996, 625-644.

  • VAZQUEZ-ROMERO, A., KIELLAND, N., ARÉVALO, M. J., PRECIADO, S., MELLANBY, R.J., FENG, Y., LAVILLA, R., VENDRELL, M.: Multicomponent reactions for de novo synthesis of BODIPY probes: In vivo imaging of phagocytic macrophages. J. Am. Chem. Soc., 135, 2013, 16018−16021.

  • VENDRELL, M., KRISHNA, G. G., GHOSH, K. K., ZHAI, D., LEE, J.S., ZHU, Q., YAU, Y.H., SHOCHAT, S.G., KIM, H., CHUNG, J., CHANG, Y.T.: Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun., 47, 2011, 8424−8426.

  • VERDOLIVA, A., BASILE, G., FASSINA, G.: Affinity purification of immunoglobulins from chicken egg yolk using a new synthetic ligand. J. Chromat. B, 749, 2000, 233-242.

  • VILLAR, H. O., YAN, J., HANSEN, M. R.: Using NMR for ligand discovery and optimization. Curr. Opin. Chem. Biol., 8, 2004, 387-391.

  • WOLBER, G., LANGER, T.: CombiGen: A novel software package for the rapid generation of virtual combinatorial libraries. In: HÖLTJE, H. D., SIPPL, W., Eds., Rational Approaches to Drug Design, Prous Science, Barcelona, Spain, 2001, pp. 390-399.

  • WONG, J. C., HONG, R., SCHREIBER, S. L.: Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc., 125, 2003, 5586-5587.

  • WOO, L. K.: Combinatorial approaches and molecular evolution of homogeneous catalysts . In: NARASIMHAN, B., MALLAPRAGADA, S. K., PORTER, M. D., Eds. Combinatorial materials science. John Wiley and Sons, Hoboken, 2007, 121-162.

  • ZHAI, D., LEE, S. C., VENDRELL, M., LEONG, L.P., CHANG, Y-T.: Synthesis of a novel BODIPY library and its application in the discovery of a fructose sensor. ACS Combi. Science, 14, 2012, 81-84.

  • ZHOU, J. Z.: Structure-directed combinatorial library design. Curr. Opin. Chem. Biol., 12, 2008, 379-385.

OPEN ACCESS

Journal + Issues

Search