Application of Ann for Prediction of Co2+, Cd2+ and Zn2+ Ions Uptake by R. Squarrosus Biomass in Single and Binary Mixtures

Peter Nemeček 1 , Dáša Kružlicová 1 , and Lucia Remenárová 2
  • 1 Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, J. Herdu 2, Trnava
  • 2 Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, J. Herdu 2, Trnava, SK-917 01, Slovak Republic


Discharge of heavy metals into aquatic ecosystems has become a matter of concern over the last few decades. The search for new technologies involving the removal of toxic metals from wastewaters has directed the attention to biosorption, based on metal binding capacities of various biological materials. Degree of sorbent affinity for the sorbate determines its distribution between the solid and liquid phases and this behavior can be described by adsorption isotherm models (Freundlich and Langmuir isotherm models) representing the classical approach. In this study, an artificial neural network (ANN) was proposed to predict the sorption efficiency in single and binary component solutions of Cd2+, Zn2+ and Co2+ ions by biosorbent prepared from biomass of moss Rhytidiadelphus squarrosus. Calculated non-linear ANN models presented in this paper are advantageous for its capability of successful prediction, which can be problematic in the case of classical isotherm approach. Quality of prediction was proved by strong agreement between calculated and measured data, expressed by the coefficient of determination in both, single and binary metal systems (R2= 0.996 and R2= 0.987, respectively). Another important benefit of these models is necessity of significantly smaller amount of data (about 50%) for the model calculation. Also, it is possible to calculate Qeq for all studied metals by one combined ANN model, which totally overcomes a classical isotherm approach

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • APIRATIKUL, R., PAVASANT, P.: Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga Caulerpa lentillifera. J. Chem. Eng., 119, 2006, 135-145.

  • BAYO, J.: Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): The competitive effect of Pb(II), Cu(II) and Ni(II). Chem. Eng. J., 191, 2012, 278- 287.

  • FAGUNDES-KLEN, M.R., FERRI, P., MARTINS, T.D., TAVARES, C.R.G., SILVA, E.A.: Equilibrium study of the binary mxture of cadmium-zinc ions biosorption by the Sargassum filipendula species using adsorption isotherms models and neural network. Biochem. Eng. J., 2007, 34, 136-146.

  • FAZLALI, A., KORANIAN, P., BEIGZADEH, R., RAHIMI, M.: Application of artificial neural network for vapor liquid equilibrium calculation of ternary system including ionic liquid: Water, ethanol and 1-butyl-3-methylimidazolium acetate. Korean J. Chem. Eng., 30(9), 2013, 1681-1686.

  • GHOSH, A., DAS, P., SINHA, K.: Modeling of biosorption of Cu(II) by alkalimodified spent tea leaves using response surface methodology (RSM) and artificial neural network ANN. Appl. Water Sci., 2014, DOI 10.1007/s13201-014-0180-z.

  • HO, Y.S., MC KAY, G.: Competitive sorption of copper and nickel ions from aqueous solution using peat. Adsorption, 5, 1999, 409-417.

  • HO, Y.S., PORTER, J.F., MCKAY, G.: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141, 2002, 1-33.

  • CHU, K.H. and KIM, E.Y.: Predictive modeling of competitive biosorption equilibrium data. Biotechnol. Bioprocess Eng., 11, 2006, 67-71.

  • KABUBA, J., MULABA-BAFUBIANDI, A., BATTLE, K.: Binary mixture of copper-cobalt ions uptake by zeolite using neural network. World Acad. Sci. Eng. Technol., 6, 2012, 1000-1005.

  • KAFSHGARI, M.H., MANSOURI, M., KHORRAM, M., KASHANI, S., R.: Kinetic modeling: a predictive tool for the adsorption of zinc ions onto calcium alginate beads. Int. J. Ind. Chem., 4, 2013, 1-7.

  • LI, L., LIU, F., JING, X., LING, P., LI, A.: Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling. Water Res., 45, 2011, 1177-1188.

  • MAREŠOVÁ, J., PIPÍŠKA, M., ROZLOŽNÍK, M., HORNÍK, M., REMENÁROVÁ, L., AUGUSTÍN, J.: Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266, 2011, 134-141.

  • MASOOD, F., MASOOD, A., ANSARI, M.A., MALIK, A.: Prediction of biosorption of total chromium by Bacillus sp. using artificial neural network. Bull. Environ. Contam. Toxicol., 88, 2012, 563-570.

  • MAY, R., DANDY, G., MAIE, H.: Artificial Neural Networks - Methodological Advances and Biomedical Applications. In Tech, Rijeka, 2011, 362 pp.

  • MOHAN, D., SINGH, K.P.: Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste. Water Res., 36, 2002, 2304-2318.

  • MOHAPATRA, H., GUPTA, R.: Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresour. Technol., 96, 2005, 1387-1398.

  • MONTANO, J.J., PALMER A.: Numeric sensitivity analysis applied to feedforward neural networks. Neural Comput. & Appl., 12, 2003, 119-125.

  • OGUZ, E., ERSOY, M.: Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modeling. Ecotoxicol. Environ. Saf., 2014, 99, 54-60.

  • PIPÍŠKA, M., HORNÍK, M., REMENÁROVÁ, L., AUGUSTÍN, J., LESNÝ, J.: Biosorption of cadmium, cobalt and zinc by moss Rhytidiadelphus squarrosus in the single and binary component. Acta Chim. Slov., 57, 2010, s. 163-172.

  • PIPÍŠKA, M., HORNÍK, M., REMENÁROVÁ, L., AUGUSTÍN, J.: Equilibrium modelling of metal biosorption from multicomponent systems. In: Biotechnology & Metals: 1st International Conference, Košice, Slovakia, 2009, s. 77-81.

  • PRAKASH, N., MANIKANDAN, S.A., GOVINDARAJAN, L., VIJAYAGOPAL, V.: Prediction of biosorption efficiency for the removal of copper (II) using artificial neural network. J. Hazard. Mater., 2008, 152, 1268-1275.

  • RAJ, K.R., KARDAM, A., ARORA, J.K., SRIVASTAVA, S.: An application of ANN modeling on the biosorption of arsenic. Waste Biomass Valor., 4, 2013, 401-407.

  • REMENÁROVÁ, L., PIPÍŠKA, M., HORNÍK, M., AUGUSTÍN, J.: Mechanistic evaluation of Co and Zn sorption processes using equilibrium modeling, FTIR and SEM-EDX analysis. In: Chemické Listy: XI. medzinárodná konferencia Súčasný stav a perspektívy analytickej chémie v praxi: zborník príspevkov, 104, 2010, s. 722-728.

  • REMENÁROVÁ, L., PIPÍŠKA, M., ROZLOŽNÍK, M., HORNÍK, M., AUGUSTÍN, J., LESNÝ, J.: Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. J. Taiwan Inst. Chem. Eng., 43, 2012, 433-443.

  • RINCÓN, J., GONZÁLEZ, F., BALLESTER, A., BLÁZQUEZ, M.L., MUÑOZ, J.A.: Biosorption of heavy metals by chemically activated algae Fucus vesiculosus. J. Chem. Technol. Biotechnol., 80, 2005, 1403-1407.

  • SEO, D.C., YU, K., DELAUNE, R.D.: Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere, 73, 2008, 1757-1764.

  • TOVAR-GÓMEZ, R., MORENO-VIRGEN, M.R., DENA-AGUILAR, J.A., HERNÁNDEZ-MONTOYA, V., BONILLA-PETRICIOLET, A., MONTESMORÁN, M.A.: Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chem. Eng. J., 2013, 228, 1098-1109.

  • VOLESKY, B.: Biosorption process simulation tools. Hydrometallurgy, 71, 2003, 179-190.

  • YETILMEZSOY, K., DEMIREL, S.: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J. Hazard. Mater., 153, 2008, 1288-1300.


Journal + Issues