Bioinformatic Analysis of Prophage Endolysins and Endolysin-Like Genes from the Order Lactobacillales

Open access

Bioinformatic Analysis of Prophage Endolysins and Endolysin-Like Genes from the Order Lactobacillales

Endolysins belonging to the group of peptigoglycan hydrolases, which are able to cleave peptidoglycan in bacterial cell walls, become an extensively studied group of enzymes. Thanks to their narrow target specificity and low probability of resistance they are considered to be an appropriate alternative to conventional antibiotics. The present paper concerns the occurrence of endolysin and endolysin-like genes in genomes of bacteria belonging to the order Lactobacillales. Using bioinformatic programmes we compared and analysed protein sequences of catalytic and cell wall binding (CWB) domains of these enzymes, their preferred combinations, their phylogenetic relationship and potential occurence of natural "domain shuffling". The existence of this phenomenon in selected group of enzymes was confirmed only in limited range, so we assume that the natural trend is the distribution of "well-tried" combinations of catalytic and CWB domains of endolysin genes as a whole.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ALTSCHUL S.F. GISH W. MILLER W. MYERS E.W. LIPMAN D.J.: Basic local alignment search tool. J. Mol. Biol. 215 1990 403-410.

  • BENSON D.A. KARSCH-MIZRACHI I. LIPMAN D.J. OSTELL J. SAYERS E.W.: GenBank. Nucleic Acids Res. 2011 39(Database issue): D32-7.

  • BRÜSSOW H.: Phages of Dairy Bacteria. Annu. Rev. Microbiol. 55 2001 283-303.

  • CROUX C. RONDA C. LÓPEZ R. GARCÍA J.L.: Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol. Microbiol. 9 1993 1019-1025.

  • FISCHETTI A.V.: Bacteriophage lytic enzymes: novel anti-infectives. Trends. Microbiol. 13 2005 491-496.

  • HUMANN J. LENZ L.L.: Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J. Innate Immun. 1 2009 88-97.

  • LAYEC S. DECARIS B. LEBLOND-BOURGET N.: Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res. Microbiol. 159 2008 507-515.

  • LOESSNER M.J.: Bacteriophage endolysins - current state of research and applications. Curr. Opin. Microbiol. 8 2005 480-487.

  • LÓPEZ R. GARCÍA E. GARCÍA P.: Enzymes for anti-infective therapy: phage lysins. Drug Discov. Today Ther. Strateg. 1 2004 469-474.

  • MARCHLER-BAUER A. LU S. ANDERSON J.B. CHITSAZ F. DERBYSHIRE M.K. DEWEESE-SCOTT C. FONG J.H. GEER L.Y. GEER R.C. GONZALES N.R. GWADZ M. HURWITZ D.I. JACKSON J.D. KE Z. LANCZYCKI C.J. LU F. MARCHLER G.H. MULLOKANDOV M. OMELCHENKO M.V. ROBERTSON C.L. SONG J.S. THANKI N. YAMASHITA R.A. ZHANG D. ZHANG N. ZHENG C. BRYANT S.H.: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011 39(Database issue): D225-9.

  • MATHUR S. SINGH R.: Antibiotic resistance in.food lactic acid bacteria - a review. Int. J. Food Microbiol. 105 2005 281-295.

  • SANZ J.M. GARCÍA P. GARCÍA J.L.: Construction of a multifunctional pneumococcal murein hydrolase by module assembly. Eur. J. Biochem. 235 1996 601-605.

  • STROMPFOVÁ V. LAUKOVÁ A.: Antibiotic resistance of lactic acid bacteria from canine faeces. Bull. Vet. Inst. Pulawy 48 2004 215-218.

  • TAMURA K. DUDLEY J. NEI M. KUMAR S.: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 2007 1596-1599.

  • VOLLMER W. JORIS B. CHARLIER P. FOSTER S.: Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32 2008 259-286.

Search
Journal information
Impact Factor


CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.173
Source Normalized Impact per Paper (SNIP) 2018: 0.288


Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 189 2
PDF Downloads 107 88 1