Textile-Reinforced Concrete Structural Elements

Open access


The textile reinforced concrete is a material with increased mechanical properties that can allow the production of lighter structural elements. The alkali-resistant textile reinforcement is not affected by corrosion. A structural facade panel and a light pole were modeled in order to study their behavior in the case of wind pressure. The developed numerical simulations were calibrated according to available data from the literature. These simulations revealed information potentially useful in the planning of further experimental tests.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] State-of-the-Art report of RILEM Technical Committee TC 201-TRC ‘Textile Reinforced Concrete’. In: RILEM report 36. (ed.: Brameshuber W.) Bagneux France 2006.

  • [2] Williams Portal N.: Usability of Textile Reinforced Concrete: Structural Performance Durability and Sustainability. PhD thesis Chalmers University of Technology Göteborg Sweden 2015. http://publications.lib.chalmers.se/records/fulltext/220895/220895.pdf

  • [3] Contamine R. Si Larbi A. Hamelin P.: Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures 46/1. (2013) 447–458. https://doi.org/10.1016/j.engstruct.2012.07.024

  • [4] Brückner A. Ortlepp R. Curbach M.: Anchoring of shear strengthening for T-beams made of textile reinforced concrete (TRC). Materials and Structures 41/2. (2008) Springer 2008 pp. 407-418. https://doi.org/10.1617/s11527-007-9254-9

  • [5] Papanicolaou C. G. Triantafillou Th. C. Papathanasiou M. Karlos K.: Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-ofplane cyclic loading. Materials and Structures vol. 41/1. (2008) 143–157. https://doi.org/10.1617/s11527-007-9226-0

  • [6] Bernat-Maso E. Gil L. Roca P.: Numerical analysis of the load-bearing capacity of brick masonry walls strengthened with textile reinforced mortar and subjected to eccentric compressive loading. Engineering Structures 91. (2015) 96-111. https://doi.org/10.1016/j.engstruct.2015.02.032

  • [7] Verbruggen S. Aggelis D. G. Tysmans T. Wastiels J.: Bending of beams externally reinforced with TRC and CFRP monitored by DIC and AE. Composite Structures 112. (2014) 113-121. https://doi.org/10.1016/j.compstruct.2014.02.006

  • [8] Hegger J. Kulas Ch. Horstmann M.: Spatial textile reinforcement structures for ventilated and sandwich façade elements. Advances in Structural Engineering 15/4. (2012) 665–675. https://doi.org/10.1260/1369-4332.15.4.665

  • [9] Schneider H. N. Schätzke Ch. Feger Ch. Horstmann M. Pak D.: Modulare Bausysteme aus Textilbeton- sandwichelementen Textilbeton - Theorie und Praxis: Tagungsband zum 4. Kolloquium zu textilbewehrten Tragwerken (CTRS4) und zur 1. Anwendertagung T. U. Dresden Germany 2009 565–576.

  • [10] Chira A. Kumar A. Vlach T. Laiblová L. Škapin A. S. Hájek P.: Property improvements of alkali resistant glass fibres/epoxy composite with nanosilica for textile reinforced concrete applications. Materials & Design 89. (2016) 146–155. https://doi.org/10.1016/j.matdes.2015.09.122

  • [11] Chira A. Kumar A. Vlach T. Laiblová L. Hajek P.: Textile-reinforced concrete facade panels with rigid foam core prisms. Journal of Sandwich Structures & Materials 18/2. (2016) 200–214. https://doi.org/10.1177/1099636215613488

  • [12] Gopinath S Kumar V. R. Sheth H. Murthy A. R. Iyer N. R.: Pre-fabricated sandwich panels using cold-formed steel and textile reinforced concrete. Construction and Building Materials 64. (2014) 54–59. https://doi.org/10.1016/j.conbuildmat.2014.04.068

  • [13] Shams A. Hegger J. Horstmann M.: An analytical model for sandwich panels made of textile-reinforced concrete. Construction and Building Materials 64. (2014) 451–459. https://doi.org/10.1016/j.conbuildmat.2014.04.025

  • [14] Dey V. Zani G. Colombo M. Di Prisco M. Mobasher B.: Flexural impact response of textile-reinforced aerated concrete sandwich panels. Materials & Design 86/12. (2015) 187–197. https://doi.org/10.1016/j.matdes.2015.07.004

  • [15] Hegger J. Voss S.: Investigations on the bearing behaviour and application potential of textile reinforced concrete. Engineering Structures 30/7. (2008) 2050–2056. https://doi.org/10.1016/j.engstruct.2008.01.006

  • [16] ABAQUS Finite element software Hibbitt Karlsson & Sorensen Inc. USA.

  • [17] Kausay T.: Beton. A betonszabvány néhány fejezetének értelmezése Mérnöki Kamara Nonprofit Kft Budapest Hungary 2013.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 11
PDF Downloads 45 45 5