Development of a Gait Recognition System in NI LabVIEW Programming Language

Open access


Nowadays, the biometric identifier’s world is one of the most rapidly developing security technology areas. Within the biometric identification, the research team worked in the area of gait recognition. The research team developed a complex walking recognition system in NI LabVIEW environment that can detect multiple simultaneous reference points using a universal camera and capable of matching a predetermined curve to the collected samples. In the first version, real-time processing was done with a single camera, while in the second, two high-resolution cameras work with post-processing. The program can compare and evaluate the functions that are matched to the reference curve and the current curve in a specific way, whether two walking images are identical. The self-developed gait recognition system was tested on several test subjects by the research team and according to the results, the False Acceptance Rate was zero.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Viktor D.: Optikai alapú Motion Capture rendszer. 2011. 5 7–9.

  • [2] Boyd J. E. Little J. J.: Biometric Gait Recognition. Springer Verlag Berlin Heidelberg 2005 19-42.

  • [3] Salánki D. Sarvajcz K. Husi G.: Járásfelismerés fejlesztése NI LabVIEW környezetben. Debreceni Egyetem Műszaki Kar Mechatronikai mérnök BSc szakdolgozat 2018.

  • [4] Salánki D: Járásfelismerés fejlesztése NI LabVIEW környezetben. Debreceni Egyetem Műszaki Kar Kari TDK Debrecen 2017.

  • [5] Fogel I. Sagi D.: Gabor filters as texture discriminator. Biological Cybernetics 1989 61.

  • [6] Dacheng Tao Xuelong Li Xindong Wu Maybank S. J.: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE transactions on pattern analysis and machine intelligence 2007. 1–35.

  • [7] Khalid Bashir Tao Xiang Shaogang Gong: Gait recognition without subject cooperation. Pattern Recognition Letters 2010. 2052–2060.

  • [8] Chin Poo Lee Alan W.C. Tan Shing Chiang Tan: Gait recognition with Transient Binary Patterns. J. Vis. Commun. Image R. 2015. 69–77.

  • [9] Gálai B. Benedek Cs.: Járás alapú személyazonosítás és cselekvésfelismerés LiDAR szenzorokkal 2017.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 3
PDF Downloads 16 16 1