The Algebraic Structure of Quantity Calculus

Open access

Abstract

The algebraic structure underlying the quantity calculus is defined axiomatically as an algebraic fiber bundle, that is, a base structure which is a free Abelian group together with fibers which are one dimensional vector spaces, all of them bound by algebraic restrictions. Subspaces, tensor product, and quotient spaces are considered, as well as homomorphisms to end with a classification theorem of these structures. The new structure provides an axiomatic foundation of quantity calculus which is centered on the concept of dimension, rather than on the concept of unit, which is regarded as secondary, and uses only integer exponents of the dimensions.

[1] Kitano, M. (2013). Mathematical structure of unit systems. Journal of Mathematical Physics, 54, 052901.

[2] Krystek, M. (2015). The term ’dimension’ in the international system of units. Metrologia, 52, 297-300.

[3] Atkey, R., Ghani, N., Forsberg, F. N., Revell, T., Staton, S. (2015). Models for polymorphism over physical dimensions. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA’15), 999-1013.

[4] Domotor, Z. (2017). Torsor theory of physical quantities and their measurement. Measurement Science Review, 17 (4), 152-177.

[5] Mills, I. (2016). On the units radian and cycle for the quantity plane angle. Metrologia, 53, 991-997.

[6] Mari, L., Giordani, A. (2012). Quantity and quantity value. Metrologia, 49, 756-764.

[7] Feller, U. (2011). The International System of Units- a case for reconsideration. Accreditation and Quality Assurance, 16, 143-153.

[8] Foster, M. (2010). The next 50 years of the SI: A review of the opportunities for the e-Science age. Metrologia, 47, R41-R51.

[9] Johansson, I. (2010). Metrological thinking needs the notions of parametric quantities, units and dimensions. Metrologia, 47, 219-230.

[10] Barrow, J.D., Gibbons, G.W. (2017). Maximum magnetic moment to angular momentum conjecture. Physical Review D ,95, 064040.

[11] Kostro, L. (2010). The physical meaning of the coefficients cn=G (n = 1;2; : : : 5) and the Standard Model of the Universe. AIP Conference Proceedings, 1316 (1), 165-179.

[12] Joint Committee for Guides in Metrology. (2012). International vocabulary of metrology - Basic and general concepts and associated terms (VIM). 3rd edition. JCGM 200:2012.

[13] de Boer, J. (1994). On the history of quantity calculus and the international system. Metrologia, 31, 405-429.

[14] Fourier, J.B.J. (1822). Théorie analytique de la Chaleur. Paris: Chez Firmin Didot, père et fils.

[15] Hallock, W., Wade, H.T. (1906). Outlines of the Evolution of Weights and Measures and the Metric System. The Macmillan Company.

[16] Maxwell, J. (1873). Treatise on Electricity and Magnetism. Oxford University Press.

[17] Buckingham, E. (1914). On physically similar systems: Illustrations of the use of dimensional equations. Physical Review, 4, 345-376.

[18] Landolt, M. (1945). Größe, Maßzahl und Einheit. Rascher Verlag Zurich. (French Translation - Paris: Dunod, 1947)

[19] Fleischmann, R. (1959/60). Einheiteninvariante Größengleichungen, Dimensionen. Der Mathematische und Naturwissenschaftliche Unterricht, 12, 385-443.

[20] Quade, W. (1961). Über die algebraische Struktur des Größenkalküls der Physik. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 13, 24-65. (Translated as an appendix to Dimensional Analysis for Economists by F.J. de Jong, Amsterdam: North Holland Publishing Company, 1967)

[21] Drobot, S. (1953). On the foundations of dimensional analysis. Studia Mathematica, 14, 84-99.

[22] Whitney, H. (1968). The mathematics of physical quantities: Part II: Quantity structures and dimensional analysis. The American Mathematical Monthly, 75 (3), 227-256.

[23] Carlson, D. (1979). A mathematical theory of physical units, dimensions and measures. Archive for Rational Mechanics and Analysis, 70, 289-304.

[24] Giorgi, G. (1904). Proposals concerning electrical and physical units. In Transactions of the International Electrical Congress: St. Louis, 1904. Albany, N.Y.: J.B. Lyon Company, 136-141.

[25] Bridgman, P. (1922). Dimensional Analysis. Yale University Press.

[26] Rotman, J. (1995). An Introduction to the Theory of Groups, 4th edition. Springer.

[27] Lainscsek, C., Gorodnitsky, I. (2003). Planck’s natural units are contained in a time series. AIP Conference Proceedings, 676 (1), 370-371.

[28] Domotor, Z. (2012). Algebraic frameworks for measurement in the natural sciencies. Measurement Science Review, 12 (6), 213-233.

[29] Domotor, Z. (2016). An algebraic approach to unital quantities and their measurement. Measurement Science Review, 16 (3), 103-126.

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.345
5-year IMPACT FACTOR: 1.253



CiteScore 2017: 1.61

SCImago Journal Rank (SJR) 2017: 0.441
Source Normalized Impact per Paper (SNIP) 2017: 0.936

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 16
PDF Downloads 25 25 10