A Novel Marker Based Method to Teeth Alignment in MRI

Open access


Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

[1] Rohner, D., Jaquiéry, C., Kunz, C., Bucher, P., Maas, H., Hammer, B. (2003). Maxillofacial reconstruction with prefabricated osseous free flaps: A 3-year experience with 24 patients. Plastic and Reconstructive Surgery, 112 (3), 748-757.

[2] Plooij, J.M., Maal, T.J., Haers, P., Borstlap, W.A., Kuijpers-Jagtman, A.M., Bergé, S.J. (2011). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. International Journal of Oral and Maxillofacial Surgery, 40 (4), 341-352.

[3] Jones, S. (1929). Radiography and pronunciation. British Journal of Radiology, 2 (15), 149-56.

[4] Scheier, M. (1897). Die Anwendung der Röntgen-strahlen für die Physiologie der Stimme und Sprache. Deutsche Medizinische Wochenschrift, 23 (25), 403.

[5] Vampola, T., Horáček, J., Laukkanen, A.M., Švec, J.G. (2015). Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logopedics Phoniatrics Vocology, 40 (1), 14-23.

[6] Sovijärvi, A. (1938). Die gehaltenen, geflüsterten und gesungenen vokale und nasale der Finnischen sprache - physiologisch-physikalische lautanalysen. Helsinki: Annales Academie Scientiarum Fennicae; German text.

[7] Lingala, S.G., Sutton, B.P., Miquel, M.E., Nayak, K.S. (2016). Recommendations for real-time speech MRI. Journal of Magnetic Resonance Imaging, 43 (1), 28-44.

[8] Baer, T., Gore, J.C., Boyce, S., Nye, P.W. (1987). Application of MRI to the analysis of speech production. Magnetic Resonance Imaging, 5 (1), 1-7.

[9] Scott, A.D., Wylezinska, M., Birch, M.J., Miquel, M.E. (2014). Speech MRI: Morphology and function. Physica Medica: European Journal of Medical Physics, 30 (6), 604-618.

[10] Wakumoto, M., Masaki, S., Dang, J., Honda, K., Shimada, Y., Fujimoto, I., Nakamura, Y. (1997). Visualization of dental crown shape in an MRI-based speech production study. International Journal of Oral and Maxillofacial Surgery, 26, 189-190.

[11] Hövener, J.B., Zwick, S., Leupold, J., Eisenbeiβ, A.K., Scheifele, C., Schellenberger, F., Hennig, J., Elverfeldt, D., Ludwig, U. (2012). Dental MRI: Imaging of soft and solid components without ionizing radiation. Journal of Magnetic Resonance Imaging, 36 (4), 841-846.

[12] Hiraishi, K., Narabayashi, I., Fujita, O., Yamamoto, K., Sagami, A., Hisada, Y., Saika, Y., Adachi, I., Hasegawa, H. (1995). Blueberry juice: Preliminary evaluation as an oral contrast agent in gastrointestinal MR imaging. Radiology, 194 (1), 119-123.

[13] Kitamura, T., Nishimoto, H., Fujimoto, I., Shimada, Y. (2011). Dental imaging using a magnetic resonance visible mouthpiece for measurement of vocal tract shape and dimensions. Acoustical Science and Technology, 32 (5), 224-227.

[14] Ng, I.W., Ono, T., Inoue-Arai, M.S., Honda, E., Kurabayashi, T., Moriyama, K. (2011). Application of MRI movie for observation of articulatory movement during a fricative/s/and a plosive/t/Tooth visualization in MRI. The Angle Orthodontist, 81 (2), 237-244.

[15] Olt, S., Jakob, P.M. (2004). Contrast-enhanced dental MRI for visualization of the teeth and jaw. Magnetic Resonance in Medicine, 52 (1), 174-176.

[16] Takemoto, H., Kitamura, T., Nishimoto, H., Honda, K. (2004). A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions. Acoustical Science and Technology, 25 (6), 468-474.

[17] Ventura, S.R., Freitas, D.R., Ramos, I.M., Tavares, J.M.R. (2014). Three-dimensional visualization of teeth by magnetic resonance imaging during speech. In Biodental Engineering II. Taylor & Francis Group, 13-17.

[18] Ventura, S.R., Freitas, D.R., Tavares, J.M.R. (2009). Application of MRI and biomedical engineering in speech production study. Computer Methods in Biomechanics and Biomedical Engineering, 12 (6), 671-681.

[19] Idiyatullin, D., Corum, C., Moeller, S., Prasad, H.S., Garwood, M., Nixdorf, D.R. (2011). Dental magnetic resonance imaging: Making the invisible visible. Journal of Endodontics, 37 (6), 745-752.

[20] Traser, L., Flügge, T.V., Burdumy, M., Kamberger, R., Richter, B., Hassepass, F., Korvink, J.G., Echternach, M. (2015). A comparison of different methods to generate tooth surface models without applying ionizing radiation for digital 3-dimensional image fusion with magnetic resonance imaging–based data of the head and neck region. Journal of Computer Assisted Tomography, 39 (6), 882-889.

[21] Sicherer, S.H., Sampson, H.A. (2006). Food allergy. Journal of Allergy and Clinical Immunology, 117 (2), S470-S475.

[22] Weiger, M., Pruessmann, K.P., Bracher, A.K., Köhler, S., Lehmann, V., Wolfram, U., Hennel, F., Rasche, V. (2012). High-resolution ZTE imaging of human teeth. NMR in Biomedicine, 25 (10), 1144-1151.

[23] Ender, A., Mehl, A. (2013). Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109 (2), 121-128.

[24] Eggert, D.W., Lorusso, A., Fisher, R.B. (1997). Estimating 3-D rigid body transformations: A comparison of four major algorithms. Machine Vision and Applications, 9 (5-6), 272-290.

[25] Aalto, D., Aaltonen, O., Happonen, R.P., Jääsaari, P., Kivelä, A., Kuortti, J., Luukinen, J.M., Malinen, J., Murtola, T., Parkkola, R., Saunavaara, J., Soukka, T., Vainio, M. (2014). Large scale data acquisition of simultaneous MRI and speech. Applied Acoustics, 83, 64-75.

[26] Ojalammi, A., Malinen, J. (2017). Automated segmentation of upper airways from MRI - vocal tract geometry extraction. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 2: Bioimaging. Setúbal, Portugal: SciTePress, 77-84.

[27] Athanasiou, A.E., Van der Meij, A.J.W. (1995). Posteroanterior (frontal) cephalometry. In Orthodontic Cephalometry. Mosby-Wolfe, 141-161.

[28] Lorensen, W.E., Cline, H.E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH '87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 163-169.

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.345
5-year IMPACT FACTOR: 1.253

CiteScore 2017: 1.61

SCImago Journal Rank (SJR) 2017: 0.441
Source Normalized Impact per Paper (SNIP) 2017: 0.936


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 27
PDF Downloads 49 49 19