Measuring Light Air Ions in a Speleotherapeutic Cave

Z. Roubal 1 , K. Bartušek 2 , Z. Szabó 1 , P. Drexler 1 ,  and J. Überhuberová 3
  • 1 Department of Theoretical and Experimental Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická, 3082/12, 61600, Brno, Czech Republic
  • 2 Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Kralovopolska, 147, 61200, Brno, Czech Republic
  • 3 Children’s Speleotherapy Medical Centre, South Moravian Children’s Medical Facilities (public benefit organisation), Ostrov u Macochy, 389, 67914, Ostrov u Macochy, Czech Republic


The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hörrak, U. (2001). Air ion mobility spectrum at a rural area. PhD thesis, University of Tartu, Estonia.

  • [2] Aplin, K.L., Harrison, R.G. (2001). A self-calibrating programable mobility spectrometer for atmospheric ion measurements. Review of Scientific Instruments, 72 (8), 3467-3469.

  • [3] Aplin, K.L., Harrison, R.G. (2000). A computer-controlled Gerdien atmospheric ion counter. Review of Scientific Instruments, 71 (8), 3037-3041.

  • [4] Harrison, R.G., Aplin, K.L. (2000). A multimode electrometer for atmospheric ion measurements. Review of Scientific Instruments, 71 (12), 4683-4685.

  • [5] Harrison, R.G., Aplin, K.L. (2007). Water vapour changes and atmospheric cluster ions. Atmospheric Research, 85 (2), 199-208.

  • [6] Hirsikko, A., et. al. (2011). Atmospheric ions and nucleation: A review of observations. Atmospheric Chemistry and Physics, 11, 767-798.

  • [7] Tammet, H., Kulmala, M. (2005). Simulation tool for atmospheric aerosol nucleation bursts. Journal of Aerosol Science, 36 (2), 173-196.

  • [8] Harrison, R.G., Tammet, H. (2008). Ions in the terrestrial atmosphere and other solar system atmospheres. Space Science Reviews, 137 (1-4), 107-118.

  • [9] Grabarzyk, Z. (2001). Frequency characteristic of an aspiration integrating small ion counter with a shielded collector. Journal of Electrostatics, 51-52, 284-289.

  • [10] Tammet, H. (2006). Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA. Atmospheric Research, 82 (3), 523-535.

  • [11] Mirme, A., Tamm, E., Mordas, G., Vana, M., Uin, A.J., Mirme, S., Bernotas, T., Laakso, L., Hirsikko, A., Kulmala, M. (2007). A widerange multi-channel Air Ion Spectrometer. Boreal Environment Research, 12, 247-264.

  • [12] Tammet, H., Mirme, A., Tamm, E. (2002). Electrical aerosol spectrometer of Tartu University. Atmospheric Research, 62 (3-4), 315-324.

  • [13] Biskos, G., Reavell, K., Collings, N. (2005). Description and theoretical analysis of a differential mobility spectrometer. Aerosol Science and Technology, 39, 527-541.

  • [14] Kolarž, P., Marinković, B.P., Filipović, D.M. (2005). Zeroing and testing units developed for Gerdien atmospheric ion detectors. Review of Scientific Instruments, 76 (4), 046107.

  • [15] Charry, J.M., Kavet, R. (1987). Air Ions: Physical and Biological Aspects. CRC Press.

  • [16] Sirota, V., Safronova, V.G., Amelina, A.G., Maltseva, V.N., Avkhacheva, N.V., Sofin, A.D., Yanin, V.A., Mubarakshina, E.K., Romanova, L.K., Novoselov, V.I. (2008). The effect of negative air ions on the respiratory organs and blood. Biophysics, 53 (5), 457–462.

  • [17] Sirota, T.V., Novoselov, V.I., Safronova, V.G., Yanin, V.A., Tsvetkov, V.D., Amelina, S.E., Lushnikova, A.L., Maltseva, V.N., Tikhonov, V.P., Kondrashova, M.N. (2006). The effect of inhaled air ions generated by technical ionizers and a bioionizer on rat trachea mucosa and the phagocytic activity of blood cells. IEEE Transactions on Plasma Science, 34 (4), 1351-1358.

  • [18] Tikhonov, V.P., Temnov, A.A., Kushnir, V.A., Sirota, T.V., Litvinova, E.G., Zakharchenko, M.V., Kondrashova, M.N. (2004). Complex therapeutical effect of ionized air: Stimulation of the immune system and decrease in excessive serotonin. H2O2 as a link between the two counterparts. IEEE Transactions on Plasma Science, 32 (4), 1661-1667.

  • [19] Kondrashova, M.N., Grigigorreko, E.V., Tikhonov, A.N., Sirota, T.V., Temnov, A.V., Stavrovskaya, I.G., Kosyakova, N.I., Lange, N.V., Tikonov, V.P. (2000). The primary physico-chemical mechanism for the beneficial biological/medical effects of negative air ions. IEEE Transactions on Plasma Science, 28 (1), 230-237.

  • [20] Tikhonov, V.P., Tsvetkov, V.D., Litvinova, E.G., Sirota, T.V., Kondrashova, M.N. (2004). Generation of negative air ions by plants upon pulsed stimulation applied to soil. Journal of Plant Physiology, 51 (3), 414-419.

  • [21] Szabó, Z., Bartušek, K. (2009). Air ions concentration influence on bacterial colony count in the dwelling spaces. In PIERS Proceedings, Moscow, Russia, August 18-21, 2009, 1053-1055.

  • [22] Kolarž, P.M., Filipović, D.M., Marinković, B.P. (2009). Daily variations of indoor air-ion and radon concentrations. Applied Radiation and Isotopes, 67 (11), 2062-2067.

  • [23] Kolarž, P., Gaisberger, M., Madl, P., Hofmann, W., Ritter, M., Hartl, A. (2011). Characterization of ions at Alpine waterfalls. Atmospheric Chemistry & Physics Discussions, 11 (9), 3687-3697.

  • [24] Freund, F.T., Kulahci, I.G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., Freund, M.M. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar-Terrestrial Physics, 71 (17-18), 1824-1834.

  • [25] Freund, F. (2011) Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41 (4-5), 383-400.

  • [26] Aplin, K.L. (2008). Composition and measurement of charged atmospheric clusters. In Planetary Atmospheric Electricity. Springer, Vol. 30, 213-224.

  • [27] Leblanc, F., Aplin, K.L., Yair, Y., Harrison, G., Lebreton, J.P., Blanc, M. (Eds.) (2008). Planetary Atmospheric Electricity. Springer.

  • [28] Israël, H. (1971). Atmospheric Electricity. Vol. I. Jerusalem: IPST.

  • [29] Jirka, Z. (2001). Speleoterapie: principy a zkušenosti. 1. vyd. Olomouc: Univerzita Palackého. (in Czech)

  • [30] Bartušek, K., Fiala, P., Jirků, T., Kroutilová, E. (2007). Experiments of accuracy air ion field measurement. PIERS Online, 3 (8), 1330-1333.

  • [31] Steinbauer, M., Fiala, P., Bartušek, K., Szabó, Z. (2008). Experiments with accuracy of air ion field measurement. In PIERS Proceedings, Hangzhou, China, March 24-28, 2008, 1062-1066.

  • [32] Roubal, Z., Křepelka, P. (2013). Estimation of the air ion mobility spectrum by means of a Gerdien Tube with a segmented inner electrod. In PIERS Proceedings, Stockholm, Sweden, August 12-15, 2013, 767-771.

  • [33] Roubal, Z., Szabó, Z., Steinbauer, M. (2014). Uncertainty determination in measurements using a Gerdien Tube. In PIERS Proceedings, Guangzhou, China, August 25-28, 2014, 1902-1906.

  • [34] Israël, H., Schulz, L. (1933). The mobility-spectrum of atmospheric ions—principles of measurements and results. Journal of Geophysical Research, 38 (4), 285-300.

  • [35] Roubal, Z., Steinbauer, M. (2010). Design of electrometric amplifier for aspiration condenser measurement. In PIERS Proceedings, Xi’an, China, March 22-26, 2010, 1430-1434.

  • [36] Bartušek, K., Dokoupil, Z. (2003). Automatic device for ion fields measurement. Measurement Science Review, 3 (3), 75-78.

  • [37] Roubal, Z., Steinbauer, M., Szabó, Z. (2010). Modeling of saturation characteristic of an aspiration condenser. PIERS Online, 6 (1), 26-30.

  • [38] Roubal, Z., Bartušek, K., Szabó, Z., Drexler, P. (2011). Measurement of concentration and mobility spectrum of air ions in the natural environment. In PIERS Proceedings, Marrakesh, Morocco, March 20-23, 2011, 648-652.

  • [39] Bartušek, K., Buřival, Z., Darina, H. (1999). Methodology of measurement of air ions in moist environment for speleotheraphy. In Measurement ‘99: 2nd International Conference on Measurement. Bratislava, Slovak Republic: Institute of Measurement Science, Slovak Academy of Sciences, 262-265.

  • [40] Kolarž, P.M., Filipović, D.M. (2003). A new design of Gerdian type of small air-ion detector. In 5th General International Conference of Balkan Physical Union (BPU-5), August 25-29, 2003, Vrnajcka Banja, Serbia and Montenegro, 411.


Journal + Issues