Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

R. Kořínek 1 , J. Mikulka 2 , J. Hřib 3 , J. Hudec 1 , L. Havel 3 ,  and K. Bartušek 1
  • 1 Institute of Scientific Instruments of the CAS, Kralovopolska, 147, 612 64, Brno, Czech Republic
  • 2 Brno University of Technology, Faculty of Electrotechnical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering, Technická, 3082/12, 616 00, Brno, Czech Republic
  • 3 Mendel University in Brno, Faculty of Agronomy, Department of Plant Biology, Zemedelska, 1, 613 00, Brno, Czech Republic


The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mac Fall, J.S., Van As, H. (1996). Magnetic resonance imaging of plants. In Nuclear Magnetic Resonance in Plant Biology. The American Society of Plant Physiologists, 33-76.

  • [2] Scheenen, T., Vergeldt, F., Heemskerk, A., Van As, H. (2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology, 144, 1157-1165.

  • [3] Ionenko, I., Anisimov, A., Dautova, N. (2010). Effect of temperature on water transport through aquaporins. Biologia Plantarum, 54, 488-494.

  • [4] Pu, Y., Chen, F., Ziebell, A., Davison, B., Ragauskas, A. (2009). NMR characterization of C3H and HCT down-regulated alfalfa lignin. BioEnergy Research, 2, 198-208.

  • [5] Zulak, K., Weljie, A., Vogel, H., Facchini, P. (2008). Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 8, 5.

  • [6] Lambert, J., Lampen, P., von Bohlen, A., Hergenroder, R. (2006). Two- and three-dimensional mapping of the iron distribution in the apoplastic fluid of plant leaf tissue by means of magnetic resonance imaging. Analytical and Bioanalytical Chemistry, 384, 231-236.

  • [7] Glidewell, S., Möller, M., Duncan, G., Mill, R., Masson, D., Williamson, B. (2002). NMR imaging as a tool for noninvasive taxonomy: Comparison of female cones of two Podocarpaceae. New Phytologist, 154, 197-207.

  • [8] Šupálková, V., Petřek, J., Baloun, J., Adam, V., Bartušek, K., Trnková, L., Beklová, M., Diopan, V., Havel, L., Kizek, R. (2007). Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium (II) and lead (II) ions. Sensors, 7, 743-759.

  • [9] Šebánek, J., Sladký, Z., Procházka, S. (1991). Experimental Morphogenesis and Integration of Plants: Terofal. 1st Edition. Prague, Czech Republic: Academia; Elsevier.

  • [10] Dostál, R. (1967). On Integration in Plants. 1st Edition. Harvard University Press.

  • [11] Hřib, J., Vooková, B., Neděla, V. (2015). Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM. Open Life Sciences, 10, 285-290.

  • [12] Šamaj, J., Salaj, T., Matúšová, R., Salaj, J., Takáč, T., Šamajová, O., Volkmann, D. (2008). Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Reports, 27, 221-229.

  • [13] Neděla, V., Hřib, J., Vooková, B. (2012). Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biologia Plantarum, 56, 595-598.

  • [14] Neděla, V., Hřib, J., Havel, L., Runštuk, J. (2013) Early state of spruce somatic embryos in native state observed using the ESEM and Cryo-SEM. Microscopy and Microanalysis, 19 (suppl. 2), 20-21.

  • [15] Neděla, V., Tihlaříková, E., Hřib, J. (2015). The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microscopy Research Techniques, 78 (1), 13-21.

  • [16] Egertsdotter, U., von Arnold, S. (1995). Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantarum, 93, 334-345.

  • [17] Clarke, A., Anderson, R.L., Stone, B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry, 18, 521-540.

  • [18] Karácsonyi, Š., Pätoprstý, V., Kubačková, M. (1998). Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydrate Research, 307, 271-279.

  • [19] Seifert, G., Roberts, K. (2007). The biology of arabinogalactan proteins. Annual Review of Plant Biology, 58, 137-161.

  • [20] Mikulka, J., Hutova, E., Korinek, R., Marcon, P., Dokoupil, Z., Gescheidtova, E., Havel, L., Bartusek, K. (2016). MRI-based visualization of the relaxation times of early somatic embryos. Measurement Science Review, 16, 54-61.

  • [21] von Arnold, S. (1987). Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. Journal of Plant Physiology, 128, 233-244.

  • [22] Havel, L., Durzan, D. (1996). Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. International Journal of Plant Sciences, 157, 8-16.

  • [23] Vlašínová, H., Mikulecký, M., Havel, L. (2003). The mitotic activity of Norway spruce polyembryonic culture oscillates during the synodic lunar cycle. Biologia Plantarum, 47, 475-476.

  • [24] Bloch, F. (1946). Nuclear Induction. Physical Review, 70, 460-473.

  • [25] Xiong, T., Zhang, L., Yi, Z. (2016). Double Gaussian mixture model for image segmentation with spatial relationship. Journal of Visual Communication and Image Representation, 34, 135-145.

  • [26] Dubois, T., Dubois, J., Guedira, M., Diop, A., Vasseur, J. (1992). SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Annals of Botany, 70, 119-124.

  • [27] Šamaj, J., Bobák, M., Blehová, A., Krištin, J, Auxtová-Šamajová, O. (1995). Developmental SEM observations of an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma, 186, 45-49.

  • [28] Baluška, F., Šamaj, J., Wojtaszek, P., Volkmann, D., Menzel, D. (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiology, 133, 482-491.

  • [29] Dostál, R. (1959). O celistvosti rostliny (On Integration in Plants). Prague, Czech Republic: SZN. (in Czech)

  • [30] Verdeil, J., Hocher, V., Huet, C., Grosdemange, F., Escoute, J., Ferrière, N., Nicole, M. (2001). Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany, 88, 9-18.

  • [31] Šamaj, J., Baluška, F., Bobák, M., Volkmann, D. (1999). Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM 4. Plant Cell Reports, 18, 369-374.

  • [32] Davies, J. (2001). Extracellular matrix. In Encyclopedia of Life Sciences. Nature Publishing Group.


Journal + Issues