Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

Open access


The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mac Fall J.S. Van As H. (1996). Magnetic resonance imaging of plants. In Nuclear Magnetic Resonance in Plant Biology. The American Society of Plant Physiologists 33-76.

  • [2] Scheenen T. Vergeldt F. Heemskerk A. Van As H. (2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology 144 1157-1165.

  • [3] Ionenko I. Anisimov A. Dautova N. (2010). Effect of temperature on water transport through aquaporins. Biologia Plantarum 54 488-494.

  • [4] Pu Y. Chen F. Ziebell A. Davison B. Ragauskas A. (2009). NMR characterization of C3H and HCT down-regulated alfalfa lignin. BioEnergy Research 2 198-208.

  • [5] Zulak K. Weljie A. Vogel H. Facchini P. (2008). Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology 8 5.

  • [6] Lambert J. Lampen P. von Bohlen A. Hergenroder R. (2006). Two- and three-dimensional mapping of the iron distribution in the apoplastic fluid of plant leaf tissue by means of magnetic resonance imaging. Analytical and Bioanalytical Chemistry 384 231-236.

  • [7] Glidewell S. Möller M. Duncan G. Mill R. Masson D. Williamson B. (2002). NMR imaging as a tool for noninvasive taxonomy: Comparison of female cones of two Podocarpaceae. New Phytologist 154 197-207.

  • [8] Šupálková V. Petřek J. Baloun J. Adam V. Bartušek K. Trnková L. Beklová M. Diopan V. Havel L. Kizek R. (2007). Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium (II) and lead (II) ions. Sensors 7 743-759.

  • [9] Šebánek J. Sladký Z. Procházka S. (1991). Experimental Morphogenesis and Integration of Plants: Terofal. 1st Edition. Prague Czech Republic: Academia; Elsevier.

  • [10] Dostál R. (1967). On Integration in Plants. 1st Edition. Harvard University Press.

  • [11] Hřib J. Vooková B. Neděla V. (2015). Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM. Open Life Sciences 10 285-290.

  • [12] Šamaj J. Salaj T. Matúšová R. Salaj J. Takáč T. Šamajová O. Volkmann D. (2008). Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Reports 27 221-229.

  • [13] Neděla V. Hřib J. Vooková B. (2012). Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biologia Plantarum 56 595-598.

  • [14] Neděla V. Hřib J. Havel L. Runštuk J. (2013) Early state of spruce somatic embryos in native state observed using the ESEM and Cryo-SEM. Microscopy and Microanalysis 19 (suppl. 2) 20-21.

  • [15] Neděla V. Tihlaříková E. Hřib J. (2015). The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microscopy Research Techniques 78 (1) 13-21.

  • [16] Egertsdotter U. von Arnold S. (1995). Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantarum 93 334-345.

  • [17] Clarke A. Anderson R.L. Stone B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18 521-540.

  • [18] Karácsonyi Š. Pätoprstý V. Kubačková M. (1998). Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydrate Research 307 271-279.

  • [19] Seifert G. Roberts K. (2007). The biology of arabinogalactan proteins. Annual Review of Plant Biology 58 137-161.

  • [20] Mikulka J. Hutova E. Korinek R. Marcon P. Dokoupil Z. Gescheidtova E. Havel L. Bartusek K. (2016). MRI-based visualization of the relaxation times of early somatic embryos. Measurement Science Review 16 54-61.

  • [21] von Arnold S. (1987). Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. Journal of Plant Physiology 128 233-244.

  • [22] Havel L. Durzan D. (1996). Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. International Journal of Plant Sciences 157 8-16.

  • [23] Vlašínová H. Mikulecký M. Havel L. (2003). The mitotic activity of Norway spruce polyembryonic culture oscillates during the synodic lunar cycle. Biologia Plantarum 47 475-476.

  • [24] Bloch F. (1946). Nuclear Induction. Physical Review 70 460-473.

  • [25] Xiong T. Zhang L. Yi Z. (2016). Double Gaussian mixture model for image segmentation with spatial relationship. Journal of Visual Communication and Image Representation 34 135-145.

  • [26] Dubois T. Dubois J. Guedira M. Diop A. Vasseur J. (1992). SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Annals of Botany 70 119-124.

  • [27] Šamaj J. Bobák M. Blehová A. Krištin J Auxtová-Šamajová O. (1995). Developmental SEM observations of an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma 186 45-49.

  • [28] Baluška F. Šamaj J. Wojtaszek P. Volkmann D. Menzel D. (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiology 133 482-491.

  • [29] Dostál R. (1959). O celistvosti rostliny (On Integration in Plants). Prague Czech Republic: SZN. (in Czech)

  • [30] Verdeil J. Hocher V. Huet C. Grosdemange F. Escoute J. Ferrière N. Nicole M. (2001). Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany 88 9-18.

  • [31] Šamaj J. Baluška F. Bobák M. Volkmann D. (1999). Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM 4. Plant Cell Reports 18 369-374.

  • [32] Davies J. (2001). Extracellular matrix. In Encyclopedia of Life Sciences. Nature Publishing Group.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.122
5-year IMPACT FACTOR: 1.157

CiteScore 2018: 1.39

SCImago Journal Rank (SJR) 2018: 0.325
Source Normalized Impact per Paper (SNIP) 2018: 0.881

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 130 4
PDF Downloads 91 62 7