RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

Open access


The Radio Frequency Identification (RFID) technology has gained interests in both academia and industry since its invention. In addition to the applications in access control and supply chain, RFID is also a cost-efficient solution for Non-Destructive Testing (NDT) and pervasive monitoring. The battery free RFID tags are used as independent electromagnetic sensors or energy harvesting and data transmission interface of sensor modules for different measurement purposes. This review paper aims to provide a comprehensive overview of the innovative designs and applications of RFID sensor technology with new insights, identify the technical challenges, and outline the future perspectives. With a brief introduction to the fundamentals of RFID measurement, the enabling technologies and recent technical progress are illustrated, followed by an extensive discussion of the novel designs and applications. Then, based on an in-depth analysis, the potential constraints are identified and the envisaged future directions are suggested, including printable/wearable RFID, System-on-Chip (SoC), ultra-low power, etc. The comprehensive discussion of RFID sensor technology will be inspirational and useful for academic and industrial communities in investigating, developing, and applying RFID for various measurement applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Weinstein R. (2005). RFID: A technical overview and its application to the enterprise. IT Professional 7 (3) 27-33.

  • [2] Lakafosis V. Rida A. Vyas R. Yang L. Nikolaou S. Tentzeris M.M. (2010). Progress towards the first wireless sensor networks consisting of inkjet-printed paper-based RFID-enabled sensor tags. Proceedings of the IEEE 98 (9) 1601-1609.

  • [3] Meng Z. Lu J. (2016). A rule-based service customization strategy for smart home context-aware automation. IEEE Transactions on Mobile Computing 15 (3) 558-571.

  • [4] Occhiuzzi C. Paggi C. Marrocco G. (2011). Passive RFID strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation 59 (12) 4836-4840.

  • [5] Dey S. Saha J.K. Karmakar N.C. (2015). Smart sensing: Chipless RFID solutions for the Internet of Everything. IEEE Microwave Magazine 16 (10) 26-39.

  • [6] Gasco F. Feraboli P. Braun J. Smith J. Stickler P. DeOto L. (2011). Wireless strain measurement for structural testing and health monitoring of carbon fiber composites. Composites Part A: Applied Science and Manufacturing 42 (9) 1263-1274.

  • [7] Zhang Y. Bai L. (2015). Rapid structural condition assessment using radio frequency identification (RFID) based wireless strain sensor. Automation in Construction 54 1-11.

  • [8] Sunny A.I. Tian G.Y. Zhang J. Pal M. (2016). Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation. Sensors and Actuators A: Physical 241 34-43.

  • [9] Leon-Salas W.D. Halmen C. (2016). A RFID sensor for corrosion monitoring in concrete. IEEE Sensors Journal 16 (1) 32-42.

  • [10] Bhattacharyya R. Kalansuriya P. Sarma S. Karmakar N. (2012). Towards chipless RFID-based sensing for pervasive surface crack detection. In 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA). IEEE 46-51.

  • [11] Caizzone S. Digiampaolo E. (2015). Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sensors Journal 15 (12) 6767-6774.

  • [12] Li Z. Meng Z. (2016). A review of the radio frequency non-destructive testing for carbon-fibre composites. Measurement Science Review 16 (2) 68-76.

  • [13] Nguyen D. Phan G. Pham T. Le N. (2013). A battery free RFID sensor for quality detection of food products. In Progress in Electromagnetics Research Symposium Proceedings. PIERS 583-587.

  • [14] Potyrailo R.A. Nagraj N. Tang Z. Mondello F.J. Surman C. Morris W. (2012). Battery-free radio frequency identification (RFID) sensors for food quality and safety. Journal of Agricultural and Food Chemistry 60 (35) 8535-8543.

  • [15] Donno D.D. Catarinucci L. Tarricone L. (2014). RAMSES: RFID augmented module for smart environmental sensing. IEEE Transactions on Instrumentation and Measurement 63 (7) 1701-1708.

  • [16] Tarricone L. (2013). A long-range computational RFID tag for temperature and acceleration sensing applications. Progress in Electromagnetics Research C 45 223-235.

  • [17] Catarinucci L. Colella R. Tarricone L. (2009). A cost-effective UHF RFID tag for transmission of generic sensor data in wireless sensor networks. IEEE Transactions on Microwave Theory and Techniques 57 (5) 1291-1296.

  • [18] López-Soriano S. Parrón J. (2015). Wearable RFID tag antenna for healthcare applications. In 2015 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE 287-290.

  • [19] Choi B.-S. Lee J.-W. Lee J.-J. Park K.T. (2011). A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion. IEEE Transactions on Industrial Electronics 58 (6) 2226-2235.

  • [20] Nikitin P.V. Rao K.V.S. (2006). Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propagation Magazine 48 (6) 212-218.

  • [21] EPCglobal Inc. (2013). EPC radio-frequency identity protocols Generation-2 UHF RFID. Version 2.0.0 Ratified.

  • [22] Powercast Corporation. (2010). P2110 - 915 MHz RF power harvester receiver. REV A - 2014/11.

  • [23] Donno D.D. Catarinucci L. Tarricone L. (2014). A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks. IEEE Sensors Journal 14 (4) 1048-1055.

  • [24] Kruesi C. (2009). Design and development of a novel 3-D cubic antenna for wireless sensor networks (WSNs) and RFID applications. IEEE Antennas and Propagation Magazine 57 (10) 3293-3299.

  • [25] Huber T. et al. (2014). Ultra-low-cost RFID based on soft magnetic ribbons. IEEE Transactions on Magnetics 50 (10) 1-5.

  • [26] Huang X. et al. (2015). Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters 106 (20) 203105.

  • [27] Shao S. Kiourti A. Burkholder R.J. Volakis J.L. (2015). Broadband textile-based passive UHF RFID tag antenna for elastic material. IEEE Antennas and Wireless Propagation Letters 14 1385-1388.

  • [28] Yang L. Martin L.J. Staiculescu D. Wong C.P. Tentzeris M.M. (2008). Conformal magnetic composite RFID for wearable RF and bio-monitoring applications. IEEE Transactions on Microwave Theory and Techniques 56 (12) 3223-3230.

  • [29] Tedjini S. Karmakar N. Perret E. Vena A. Koswatta R. E-Azim R. (2013). Hold the chips: Chipless technology an alternative technique for RFID. IEEE Microwave Magazine 14 (5) 56-65.

  • [30] Kalansuriya P. Karmakar N.C. Viterbo E. (2012). On the detection of frequency-spectra-based chipless RFID using UWB impulsed interrogation. IEEE Transactions on Microwave Theory and Techniques 60 (12) 4187-4197.

  • [31] Balbin I. Karmakar N.C. (2009). Phase-encoded chipless RFID transponder for large scale low cost applications. IEEE Microwave and Wireless Components Letters 19 (8) 509-511.

  • [32] Singh T. Tedjini S. Perret E. Vena A. (2011). A frequency signature based method for the RF identification of letters. In 2011 IEEE International Conference on RFID. IEEE 1-5.

  • [33] You K. Kim H. Kim M. Yang Y. (2011). 900 MHz CMOS RF-to-DC converter using a crosscoupled charge pump for energy harvesting. In 2011 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE 149-152.

  • [34] Ramos A. Girbau D. Lázaro A. Collado A. Georgiadis A. (2015). Solar-powered wireless temperature sensor based on UWB RFID with selfcalibration. IEEE Sensors Journal 15 (7) 3764-3772.

  • [35] Xiao Z. et al. (2015). An implantable RFID sensor tag toward continuous glucose monitoring. IEEE Journal of Biomedical and Health Informatics 19 (3) 910-919.

  • [36] Salmeron J.F. et al. (2014). Design and development of sensing RFID tags on flexible foil compatible with EPC gen 2. IEEE Sensors Journal 14 (12) 4361-4371.

  • [37] Law M.K. Bermak A. Luong H.C. (2010). A sub-μ W embedded CMOS temperature sensor for RFID food monitoring application. IEEE Journal of Solid- State Circuits 45 (6) 1246-1255.

  • [38] Kellomäki T. (2012). On-body performance of a wearable single-layer RFID tag. IEEE Antennas and Wireless Propagation Letters 11 73-76.

  • [39] Occhiuzzi C. Cippitelli S. Marrocco G. (2010). Modeling design and experimentation of wearable RFID sensor tag. IEEE Transactions on Antennas and Propagation 58 (8) 2490-2498.

  • [40] Kalansuriya P. Bhattacharyya R. Sarma S. (2013). RFID tag antenna-based sensing for pervasive surface crack detection. IEEE Sensors Journal 13 (5) 1564-1570.

  • [41] Murthy S.G.N. (2015). Batteryless Wireless RFID based embedded sensors for long term monitoring of reinforced concrete structures. In 2015 International Symposium Non-Destructive Testing in Civil Engineering 1-8.

  • [42] Kim J. Wang Z. Kim W.S. (2014). Stretchable RFID for wireless strain sensing with silver nano ink. IEEE Sensors Journal 14 (12) 4395-4401.

  • [43] Hasani M. Vena A. Sydänheimo L. Ukkonen L. Tentzeris M.M. (2013). Implementation of a dual interrogation mode embroidered RFID-enabled strain sensor. IEEE Antennas and Wireless Propagation Letters 12 1272-1275.

  • [44] Manzari S. Catini A. Pomarico G. Di Natale C. Marrocco G. (2014). Development of an UHF RFID chemical sensor array for battery-less ambient sensing. IEEE Sensors Journal 14 (10) 3616-3623.

  • [45] Occhiuzzi C. Rida A. Marrocco G. Tentzeris M.M. (2011). CNT-based RFID passive gas sensor. In 2011 IEEE MTT-S International Microwave Symposium Digest. IEEE 1-4.

  • [46] Yang L. Zhang R. Staiculescu D. (2009). A novel conformal RFID-Enabled module utilizing inkjetprinted antennas and carbon nanotubes for gasdetection applications. IEEE Antennas and Wireless Propagation Letters 8 653-656.

  • [47] Jia Y. Heiß M. Fu Q. Gay N.A. (2009). A prototype RFID humidity sensor for built environment monitoring. In International Workshop on Education Technology and Training and International Workshop on Geoscience and Remote Sensing (ETT and GRS 2008). IEEE 496-499.

  • [48] Qi Z. Zhuang Y. Li X. Liu W. Du Y. Wang B. (2014). Full passive UHF RFID tag with an ultra-low power small area high resolution temperature sensor suitable for environment monitoring. Microelectronics Journal 45 (1) 126-131.

  • [49] Tan Z. et al. (2013). A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE Journal of Solid- State Circuits 48 (10) 2469-2477.

  • [50] Wu X. Deng F. Hao Y. Fu Z. Zhang L. (2015). Design of a humidity sensor tag for passive wireless applications. Sensors 15 (10) 25564-25576.

  • [51] Feng Y. Xie L. Chen Q. Zheng L.-R. (2015). Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sensors Journal 15 (6) 3201-3208.

  • [52] Fernandez-Salmeron J. et al. (2015). HF RFID tag as humidity sensor: Two different approaches. IEEE Sensors Journal 15 (10) 5726-5733.

  • [53] Luvisi A. Panattoni A. Materazzi A. (2016). RFID temperature sensors for monitoring soil solarization with biodegradable films. Computers and Electronics in Agriculture 123 135-141.

  • [54] Yin J. et al. (2010). A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE Journal of Solid-State Circuits 45 (11) 2404-2420.

  • [55] Fiddes L.K. Chang J. Yan N. (2014). Electrochemical detection of biogenic amines during food spoilage using an integrated sensing RFID tag. Sensors and Actuators B: Chemical 202 1298-1304.

  • [56] Eom K.H. Kim M.C. Lee S.J. won Lee C. (2012). The vegetable freshness monitoring system using RFID with oxygen and carbon dioxide sensor. International Journal of Distributed Sensor Networks 8 (6) 472986.

  • [57] Le G.T. Tran T.V. Lee H.-S. Chung W.-Y. (2016). Long-range batteryless RF sensor for monitoring the freshness of packaged vegetables. Sensors and Actuators A: Physical 237 20-28.

  • [58] Hyun K.H. Lee C.W. Kim J.W. Eom K.H. (2014). Food monitoring system using 15.36MHz and 900MHz smart RFID tag. Advanced Science and Technology Letters 49 136-143.

  • [59] Badia-Melis R. Ruiz-Garcia L. Garcia-Hierro J. Villalba J.I.R. (2015). Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN. Sensors 15 (3) 4781-4795.

  • [60] Saravanan M.S. Singh J.K. Thirumoorthy N. (2014). RFID sensors for food safety centre by identifying the physical factors that affecting the food. In 2014 International Conference on Information Communication and Embedded Systems (ICICES). IEEE 1-6.

  • [61] Wang J. Ni D. Li K. (2014). RFID-based vehicle positioning and its applications in connected vehicles. Sensors 14 (3) 4225-4238.

  • [62] Shirehjini A.A.N. Yassine A. Shirmohammadi S. (2012). Equipment location in hospitals using RFIDbased positioning system. IEEE Transactions on Information Technology in Biomedicine 16 (6) 1058-1069.

  • [63] Miah M.S. Gueaieb W. (2014). Mobile robot trajectory tracking using noisy RSS measurements: An RFID approach. ISA Transactions 53 (2) 433-443.

  • [64] Seok J.-H. Lee J.-Y. Oh Ch. Lee J.-J. Lee H.J. (2010). RFID sensor deployment using differential evolution for indoor mobile robot localization. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE 3719-3724.

  • [65] Liu G. Mao L. Chen L. Xie S. (2014). Locatablebody temperature monitoring based on semi-active UHF RFID tags. Sensors 14 (4) 5952-5966.

  • [66] Song X. Li X. Tang W. Zhang W. Li B. (2014). A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors. Sensors 14 (12) 23095-23118.

  • [67] Huang C.-H. Lee L.-H. Ho C.C. Wu L.-L. Lai Z.-H. (2015). Real-time RFID indoor positioning system based on Kalman-filter drift removal and Heron-bilateration location estimation. IEEE Transactions on Instrumentation and Measurement 64 (3) 728-739.

  • [68] Dian Z. Kezhong L. Rui M. (2015). A precise RFID indoor localization system with sensor network assistance. China Communications 12 (4) 13-22.

  • [69] Cangialosi A. Monaly J.E. Yang S.C. (2007). Leveraging RFID in hospitals: Patient life cycle and mobility perspectives. IEEE Communications Magazine 45 (9) 18-23.

  • [70] Vaz A. et al. (2010). Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Transactions on Circuits and Systems II: Express Briefs 57 (2) 95-99.

  • [71] Rakibet O.O. Rumens C.V. Batchelor J.C. Holder S.J. (2014). Epidermal passive RFID strain sensor for assisted technologies. IEEE Antennas and Wireless Propagation Letters 13 814-817.

  • [72] Rose D.P. et al. (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering 62 (6) 1457-1465.

  • [73] Wickramasinghe A. Ranasinghe D.C. (2015). Ambulatory monitoring using passive computational RFID sensors. IEEE Sensors Journal 15 (10) 5859-5869.

  • [74] Barman J. et al. (2012). Sensor-enabled RFID system for monitoring arm activity: Reliability and validity. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20 (6) 771-777.

  • [75] Wang L. et al. (2016). Toward a wearable RFID system for real-time activity recognition using radio patterns. IEEE Transactions on Mobile Computing 6 (1) 1-13.

  • [76] Smith B.J.R. et al. (2005). RFID-based techniques for human-activity detection. Communications of the ACM 48 (9) 39-44.

  • [77] Potyrailo R.A. Mouquin H. Morris W.G. (2008). Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta 75 (3) 624-628.

  • [78] Ramos A. Girbau D. Lazaro A. Villarino R. (2015). Wireless concrete mixture composition sensor based on time-coded UWB RFID. IEEE Microwave and Wireless Components Letters 25 (10) 681-683.

  • [79] Lei Z. Zhi W. (2006). Integration of RFID into wireless sensor networks: Architectures opportunities and challenging problems. In Fifth International Conference on Grid and Cooperative Computing Workshops (GCCW '06). IEEE 463-469.

  • [80] Decarli N. Guidi F. Dardari D. (2016). Passive UWB RFID for tag cocalization : Architectures and design. IEEE Sensors Journal 16 (5) 1385-1397.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.122
5-year IMPACT FACTOR: 1.157

CiteScore 2018: 1.39

SCImago Journal Rank (SJR) 2018: 0.325
Source Normalized Impact per Paper (SNIP) 2018: 0.881

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 535 385 14
PDF Downloads 406 301 7