Image Reconstruction Method with the Exploitation of the Spatial Correlation for Electrical Capacitance Tomography

Open access

Abstract

Electrical capacitance tomography (ECT) is considered to be a competitive measurement method. The imaging objects in ECT measurements are often in a time-varying process, and exploiting the prior information related to the dynamic nature is important for reconstructing high-quality images. Different from existing reconstruction models, in this paper a new model that incorporates the spatial correlation of the pixels by introducing the radial basis function (RBF) method, the dynamic behaviors of a timevarying imaging object, and the ECT measurement information is proposed to formulate the dynamic imaging problem. An objective functional that exploits the spatial correlation of the pixels, the combinational regularizer of the first-order total variation (FOTV) and the second-order total variation (SOTV), the multi-scale regularization, the spatial constraint, and the temporal correlation is proposed to convert the ECT imaging task into an optimization problem. A split Bregman iteration (SBI) method based iteration scheme is developed for solving the proposed objective functional. Numerical simulation results validate the superiority of the proposed reconstruction method on the improvement of the imaging quality.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Xie C.G. Huang S.M. Hoyle B.S. Thorn R. Lenn C. Snowden D. Beck M.S. (1992). Electrical capacitance for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. IEE Proceedings G - Circuits Devices and Systems 139 (1) 89-98.

  • [2] Tikhonov A.N. Arsenin V.Y. (1977). Solution of Ill- Posed Problems. New York: V.H. Winston & Sons.

  • [3] Landweber L. (1951). An iteration formula for fredholm integral equations of the first kind. American Journal of Mathematics 73 (3) 615-624.

  • [4] Yang W.Q. Spink D.M. York T.A. McCann H. (1999). An image reconstruction algorithm based on Landweber’s iteration method for electrical capacitance tomography. Measurement Science and Technology 10 (11) 1065-1069.

  • [5] Jang J.D. Lee S.H. Kim K.Y. Choi B.Y. (2006). Modified iterative Landweber method in electrical capacitance tomography. Measurement Science and Technology 17 (7) 1909-1917.

  • [6] Liu S. Fu L. Yang W.Q. Wang H.G. Jiang F. (2004). Prior-online iteration for image reconstruction with electrical capacitance tomography. IEE Proceedings - Science Measurement and Technology 151 (3) 195-200.

  • [7] Yang W.Q. Peng L.H. (2003). Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology 14 (1) L1- L13.

  • [8] Su B.L. Zhang Y.H. Peng L.H. Yao D.Y. Zhang B.F. (2000). The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chemical Engineering Journal 77 (1) 37-41.

  • [9] Mou C.H. Peng L.H. Yao D.Y. Xiao D.Y. (2005). Image reconstruction using a genetic algorithm for electrical capacitance tomography. Tsinghua Science and Technology 10 (5) 587-592.

  • [10] Takei M. (2006). GVSPM image reconstruction for capacitance CT images of particles in a vertical pipe and comparison with the conventional method. Measurement Science and Technology 17 (8) 2104-2112.

  • [11] Soleimani M. Lionheart W.R.B. (2005). Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology 16 (10) 1987-1996.

  • [12] Wang H.X. Tang L. Cao Z. (2007). An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT. Flow Measurement and Instrumentation 18 (5-6) 262-267.

  • [13] Fang W.F. (2004). A nonlinear image reconstruction algorithm for electrical capacitance tomography. Measurement Science and Technology 15 (10) 2124-2132.

  • [14] Lei J. Liu S. Guo H.H. Li Z.H. Li J.T. Han Z.X. (2011). An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography. Computers and Mathematics with Applications 61 (9) 2843-2853.

  • [15] Ortiz-Aleman C. Martin R. Gamio J.C. (2004). Reconstruction of permittivity images from capacitance tomography data by using very fast simulated annealing. Measurement Science and Technology 15 (7) 1382-1390.

  • [16] Warsito W. Fan L.S. (2001). Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography. Measurement Science and Technology 12 2198-2210.

  • [17] Banasiak R. Soleimani M. (2010). Shape based reconstruction of experimental data in 3D electrical capacitance tomography. NDT & E International 43 (3) 241-249.

  • [18] Cao Z. Xu L.J. Fan W.R. Wang H.X. (2011). Electrical capacitance tomography for sensors of square cross sections using Calderon’s method. IEEE Transactions on Instrumentation and Measurement 60 (3) 900-907.

  • [19] Li Y. Yang W.Q. (2008). Image reconstruction by nonlinear Landweber iteration for complicated distributions. Measurement Science and Technology 19 1-8.

  • [20] Cao Z. Xu L.J. Wang H.X. (2010). Electrical capacitance tomography with a non-circular sensor using the dbar method. Measurement Science and Technology 21 (1) 1-6.

  • [21] Watzenig D. Brandner M. Steiner G. (2007). A particle filter approach for tomographic imaging based on different state-space representations. Measurement Science and Technology 18 (1) 30-40.

  • [22] Soleimani M. Vauhkonen M. Yang W.Q. Peyton A. Kim B.S. Ma X.D. (2007). Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter. Measurement Science and Technology 18 (11) 3287-3294.

  • [23] Lei J. Liu S. Wang X.Y. (2012). Dynamic inversion in electrical capacitance tomography using the ensemble Kalman filter. IET Science Measurement and Technology 6 (1) 63-77.

  • [24] Soleimani M. Mitchell C.N. Banasiak R. Wajman R. Adler A. (2009). Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research-PIER 90 (1) 171-186.

  • [25] Liu X. (2011). Meshfree Method. Beijing: Science Press.

  • [26] Liu G.R. (2010). Meshfree Methods: Moving Beyond the Finite Element Method (2nd ed.). Taylor & Francis Group.

  • [27] Goswami J.C. Chan A.K. (1999). Fundamentals of Wavelet: Theory Algorithm and Applications. New York: John Willy & Sons.

  • [28] Liu T. Zeng X.L. Zeng J. (2006). An Induction for Practical Wavelet Analysis. Beijing: National Defense Industry Press.

  • [29] Misiti M. Misiti Y. Oppenheim G. Poggi J.M. (2007). Wavelets and Their Applications. Herms Science.

  • [30] Golik W.L. (1998). Wavelet packets for fast solution of electromagnetic integral equations. IEEE Transactions on Antennas and Propagation 46 (5) 618-624.

  • [31] Xu C. Zhao R.Z. Gan X.B. (2004). Wavelet Analysis and Applied Algorithms. Beijing: Science Press.

  • [32] Zhang Z. Shi Y. Ding W. Yin B. (2013). MR images reconstruction based on TVWL2-L1 model. Journal of Visual Communication and Image Representation 24 (2) 187-195.

  • [33] Rudin L.I. Osher S. Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physic D 60 (1-4) 259-268.

  • [34] Li Y. Osher S. (2009). A new median formula with applications to PDE based denoising. Communications in Mathematical Sciences 7 (3) 741-753.

  • [35] Papafitsoros K. Schonlieb C.B. Sengul B. (2013). Combined first and second order total variation inpainting using split Bregman. Image Processing On Line 3 112-136.

  • [36] Chan T.F. Wong C.K. (2000). Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra and its Applications 316 (1-3) 259-285.

  • [37] Xiao Y. Zeng T. Yu J. Ng M.K. (2011). Restoration of images corrupted by mixed Gaussianimpulse noise via L1-L0 minimization. Pattern Recognition 44 (8) 1708-1720.

  • [38] Lv X.G. Song Y.Z. Wang S.X. Le J. (2013). Image restoration with a high-order total variation minimization method. Applied Mathematical Modelling 37 (16-17) 8210-8224.

  • [39] Blondel M. Seki K. Uehara K. (2013). Block coordinate descent algorithms for large-scale sparse multiclass classification. Machine Learning 93 (1) 31-52.

  • [40] Qin Z. Scheinberg K. Goldfarb D. (2013). Efficient block-coordinate descent algorithms for the group lasso. Mathematical Programming Computation 5 (1) 143-169.

  • [41] Tseng P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications 109 (3) 475-494.

  • [42] Xu Y. Yin W. (2013). A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences 6 (3) 1758-1789.

  • [43] Goldstein T. Osher S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2 (2) 323-343.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.122
5-year IMPACT FACTOR: 1.157

CiteScore 2018: 1.39

SCImago Journal Rank (SJR) 2018: 0.325
Source Normalized Impact per Paper (SNIP) 2018: 0.881

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 78 3
PDF Downloads 69 49 6