Contribution of the Refractive Index Fluctuations to the Length Noise in Displacement Interferometry

Miroslava Holá 1 , Jan Hrabina 1 , Martin Sarbort 1 , Jindrich Oulehla 1 , Ondrej Cíp 1 ,  and Josef Lazar 1
  • 1 Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic


We report on investigations of how fast changes of the refractive index influence the uncertainty of interferometric displacement measurements. Measurement of position within a limited range is typical for precise positioning of coordinate measuring systems, such as nanometrology standards combined with scanning probe microscopy (SPM). The varying refractive index of air contributes significantly to the overall uncertainty; it plays a role especially in case of longer-range systems. In our experiments we have observed that its fast variations, seen as length noise, are not linearly proportional to the measuring beam path and play a significant role only over distances longer than 50 mm. Thus, we found that over longer distances the length noise rises proportionally. The measurements were performed under conditions typical for metrology SPM systems

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Leach, R.K., Boyd, R., Burke, T., Danzebrink, H.U., Dirscherl, K., Dziomba, T., et al. (2011). The European nanometrology landscape. Nanotechnology, 22 (6).

  • [2] Neuschaefer-Rube, U., Neugebauer, M., Dziomba, T., Danzebrink, H.U., Koenders, L., Bosse, H. (2011). Recent developments of standards for 3D micro- and nanometrology. tm-Technisches Messen, 78 (3), 118-126.

  • [3] Korpelainen, V., Seppa, J., Lassila, A. (2010). Design and characterization of MIKES metrological atomic force microscope. Precision Engineering, 34 (4), 735-744.

  • [4] Haycocks, J., Jackson, K. (2005). Traceable calibration of transfer standards for scanning probe microscopy. Precision Engineering, 29 (2), 168-175.

  • [5] Jansen, A., Rosielle, N., Schellekens, P. (1999). A fully elastically guided 3-D CMM with a measuring volume or 1 cm(3). In Fourteenth Annual Meeting of the American Society for Precision Engineering. ASPE, 452-455.

  • [6] Poyet, B., Ducourtieux, S. (2010). Advances in the development of the LNE metrological atomic force microscope. In Optical Micro- and Nanometrology III. Proc. SPIE 7718.

  • [7] Werner, C., Rosielle, P.C.J.N., Steinbuch, M. (2010). Design of a long stroke translation stage for AFM. International Journal of Machine Tools & Manufacture, 50 (2), 183-190.

  • [8] Von Seggelen, J.K., Rosielle, P.C.J.N., Schellekens, P.H.J., Spaan, H.A.M., Bergmans, R.H., Kotte, G.J.W.L. (2005). An elastically guided machine axis with nanometer repeatability. CIRP Annals - Manufacturing Technology, 54 (1), 487-490.

  • [9] Haitjema, H., Rosielle, N., Kotte, G., Steijaert, H. (1998). Design and calibration of a parallel-moving displacement generator for nano-metrology. Measurement Science & Technology, 9 (7), 1098-1104.

  • [10] Jager, G., Manske, E., Hausotte, T. (2006). New applications of the Nanomeasuring Machine (NPMMachine) by novel optical and tactile probes with subnanometer repeatability. tm-Technisches Messen, 73 (9), 457-464.

  • [11] Eves, B.J. (2009). Design of a large measurementvolume metrological atomic force microscope (AFM). Measurement Science & Technology, 20 (8).

  • [12] Edlen, B. (1966) The refractive index of air. Metrologia, 2 (2), 71-80.

  • [13] Birch, K.P., Downs, M.J. (1993). An updated edlen equation for the refractive-index of air. Metrologia, 30 (3), 155-162.

  • [14] Ciddor, P.E. (1996). Refractive index of air: New equations for the visible and near infrared. Applied Optics, 35 (9), 1566-1573.

  • [15] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.

  • [16] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Suppression of air refractive index variations in high-resolution interferometry. Sensors, 11 (8), 7644-7655.

  • [17] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric systems. Sensors, 12 (10), 14084-14094.

  • [18] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.

  • [19] Mujumdar, A.K. (2014). Advanced Free Space Optics (FSO). Springer.

  • [20] Andrews, L.C., Phillips, R.L., Hopen, C.Y. (2001). Laser Beam Scintillation with Application. SPIE.

  • [21] Ricklin, J.C., Hammel, S.M., Eaton, F.D., Lachinova, S.L. (2008). Atmospheric channel effects on freespace laser communication. In Free-Space Laser Communications: Principles and Advances. Springer, 9-56.

  • [22] Wheelon, A.D. (2001). Electron Scintillation. Cambridge University Press.

  • [23] Cip, O., Petru, F. (2000). A scale-linearization method for precise laser interferometry. Measurement Science & Technology, 11 (2), 133-141.

  • [24] Petru, F., Cip, O. (1999) Problems regarding linearity of data of a laser interferometer with a singlefrequency laser. Precision Engineering, 23, 39-50.

  • [25] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. Measurement Science & Technology, 22 (9).

  • [26] Ducourtieux, S., Poyet, B. (2011). Development of a metrological atomic force microscope with minimized Abbe error and differential interferometer-based realtime position control. Measurement Science & Technology, 22 (9).

  • [27] Hola, M., Lazar, J., Cip, O., Buchta, Z. (2014). Inbeam tracking refractometry for coordinate interferometric measurement. In Optical Micro- and Nanometrology V. Proc. SPIE 9132.


Journal + Issues