Diffusion MRI: mitigation of magnetic field inhomogeneities

P. Marcon 1 , K. Bartusek 2 , Z. Dokoupil 3 ,  and E. Gescheidtova 4
  • 1 Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Kolejni, 2906/4., 612 00, Brno, Czech Republic
  • 2 Institute of Scientific Instruments of the ASCR v.v.i., Kralovopolska, 147, 612 00, Brno, Czech Republic
  • 3 Institute of Scientific Instruments of the ASCR v.v.i., Kralovopolska, 147, 612 00, Brno, Czech Republic
  • 4 Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Kolejni, 2906/4., 612 00, Brno, Czech Republic


The article reports on certain artifacts that emerge during the in vitro diffusion-weighted imaging of physical samples. In this context, the authors analyze the influence of magnetic field inhomogeneity, temperature, or eddy currents and consider artifact mitigation procedures. A technique reducing the examined spurious effects was designed, experimentally verified, and denominated as the three measurement method. The technique proved to be useful mainly for the evaluation of a DWI image measured with a diffusion gradient in the z axis, where the relative measurement error decreased to 3.38 % (during measurement using two images, the relative error was greater than 19 %). For small errors within the measurement of diffusion constants of a deionized water sample (< 5 %) it was necessary to select a b-factor value larger than 200·106 s.m-2. Temperature stabilization with accuracy better than 0.1 °C during the entire measuring process is a necessary prerequisite for the measurement of biological or material samples with relative accuracy lower than 1 %.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Fick, A. (1855). Concerns diffusion and concentration gradient.

  • [2] Fick, A. (1855). Über Diffusion. Annalen der Physik und Chemie

  • [3] Brown, R. (1828). On the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine

  • [4] Einstein, A. (1905). Über die von der molekularkinetischen Teorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik und Chemie

  • [5] Bihan, D., et al. (1986). MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. 401-407.

  • [6] Stejskal, E.O., Tanner, J.E. (1965). Spin diffusion measurements: Spin echoes in the presence of a timedependent field gradient. 42 (1), 288-292.

  • [7] Frollo, I., Andris, P., Pribil, J., Vojtisek, L., Dermek, T., Valkovic, L. (2010). Measurement and imaging of planar electromagnetic phantoms based on NMR imaging methods. (3), 97-101.

  • [8] Juras, V., Szomolanyi, P., Gäbler, S., Frollo, I., Tratting, S. (2009). The relationship between MR parameters and biomechanical quantities of loaded human articular cartilage in osteoarthritis: An in-vivo study.

  • [9] Tanner, J.E. (1970). Use of the stimulated echo in NMR diffusion studies. 52 (5), 2523-2526.

  • [10] Senaj, V., Guillot, G., Darrasse, L. (1998). Inductive measurement of magnetic field gradients for magnetic resonance imaging. 69 (6), 2400-2405.

  • [11] Robertson, S., Hughes, D.G., Liu, Q., Allen, P.S. (1992). Analysis of the temporal and spatial dependence of eddy current fields in a 40 cm bore magnet. 158-166.

  • [12] Qysong, R.E., Lowe, I.J. (1993). A simple method of measuring gradient induced eddy currents to set compensation networks. Medicine

  • [13] Balcom, B.J., Bogdan, M., Armstrong, R.L. (1996). Single-point imaging of gradient rise, stabilization, and decay. 122-125.

  • [14] Jellus, V., Sharp, J.C., Tomanek, B., Latta, P. (2003). An NMR technique for measurement of magnetic field gradient waveforms. 162 (1), 189-197.

  • [15] Chaabane, L., Favre, B., Desgoutte, P., Deguin, A., Lapray, C., Briguet, A. (1997). A multiprobe magnetometer for analysis of local field distortions induced by pulsed gradients. Technology

  • [16] Bartusek, K., Puczok, V. (1993). An NMR multifid method for measurement of magnetic field gradient. Measurement Science & Technology

  • [17] Bartusek, K., Gescheidtova, E. (2002). Instantaneous frequency of spin echo method for gradient magnetic fields measurement in MR systems. Electrical Engineering

  • [18] Jones, D.K., Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. Biomedicine

  • [19] Valkovic, L., Windischberger, C. (2010). Method for geometric distortion correction in fMRI based on three echo planar phase images. Review

  • [20] Pribil, J., Horacek, J., Horak, P. (2011). Two methods of mechanical noise reduction of recorded speech during phonation in an MRI device. Science Review

  • [21] Marcon, P., Bartusek, K., Burdkova, M., Dokoupil, Z. (2011). Magnetic susceptibility measurement using 2D magnetic resonance imaging. and Technology

  • [22] Walker, L., Chang, L.C., Koay, C.G., Sharma, N., Cohen, L., Verma, R., Pierpaoli, C. (2011). Effects of physiological noise in population analysis of diffusion tensor MRI data.

  • [23] Bartusek, K., Gescheidtova, E. (2006). Testing the quality of magnetic gradient fields for studying selfdiffusion processes by magnetic resonance methods. Measurement Science & Technology 2256-2262.

  • [24] Bartusek, K., Gescheidtova, E. (2008). MRI method of diffusion measurement in heterogeneous materials. Measurement Science & Technology 045504 .

  • [25] Johansen-Berg, H., Behrens, T.E.J. (2009). Diffusion MRI: From Quantitative Measurement to in Vivo Neuroanatomy

  • [26] Susumu, M. (2009). Introduction to Diffusion Tensor Imaging

  • [27] Kerkovsky, A., Sprlakova-Pukova, A., et. al. (2010). Diffusion tensor imaging - soucasne moznosti MR zobrazeni bile hmoty mozku. neurologie a neurochirurgie

  • [28] Tournier, J.D., Mori, S., Leemans A. (2011). Diffusion tensor imaging and beyond. Medicine

  • [29] Leemans, A., Jones, D.K. (2009). The b-matrix must be rotated when correcting for subject motion in DTI data. 1336-1349.

  • [30] Le Bihan, D., Mattiello, J., Levin, R.L. (1995). Noninvasive temperature imaging by MRI: A review. Biomedical Thermology

  • [31] Bodammer, N., Kaufmann, J., Kanowski, M., Tempelman., C. (2004). Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magnetic Resonance in Medicine

  • [32] Alexander, A.L., Tsuruda, J.S., Parker, D.L. (1997). Elimination of eddy current artifacts in diffusionweighted echo-planar images: The use of bipolar gradients. 1016-1021.

  • [33] Bartusek, K., Gescheidtova, E., Mikulka, J. (2010). Data processing in studying biological tissues, using MR imaging techniques. In Conference on Telecommunications and Signal Processing (TSP 2010) Asszisztencia Szervezö Kft., 171-175.

  • [34] Mikulka, J., Gescheidtova, E., Bartusek, K. (2012). Soft-tissues image processing: Comparison of traditional segmentation methods with 2D active contour methods. (4), 153-161.

  • [35] Irfanoglu M.O., Walker, L. Sarlls, J., Marenco, S., Pierpaoli, C. (2012). Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results.

  • [36] Mikulka, J. (2011). ImageJ plug-ins for microscopic image processing. In on Telecommunications and Signal Processing (TSP 2011)


Journal + Issues