Synthesis and Transport Properties of Nanostructured VO2 by Mechanochemical Processing

P. Billik, M. Čaplovičová 3 , J. Maňka 1 , Ľ. Čaplovič 4 , A. Cigáň 1 , A. Koňakovský 1 , R. Bystrický 1  and A. Dvurečenskij 1
  • 1 Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
  • 2 Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
  • 3 Department of Geology of Mineral Deposits, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
  • 4 Faculty of Materials Science and Technology, Institute of Materials Science, J. Bottu 25, 917 24 Trnava, Slovakia

Synthesis and Transport Properties of Nanostructured VO2 by Mechanochemical Processing

The high-energy milling of the V2O5-Na2SO3 mixture in the range of 5 - 100 min leads to a synthesis of monoclinic VO2. The starting and minimum (at 220 °C) values of electric resistance R of the 100 min milled and pressed VO2-Na2SO4 mixture were 13.9 MΩ and 91.5 kΩ, respectively. The subsequent washing of the as-milled powder partially leads to the development of VO2 nanostructures with tube-like, sheet-like and rod-like morphology, besides VO2 (B) belt-like morphology, depending on the milling times.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C., Haglund Jr., R. F. (2002). Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B, 65 (22), 2241131-2241135.

  • Wang, Y., Zhang, Z. (2009). Synthesis and field emission property of VO2 nanorods with a body-centered-cubic structure. Physica E, 41 (4), 548-551.

  • Guinneton, F., Sauques, L., Valmalette, J. C., Cros, F., Gavarri, J. R. (2001). Comparative study between nanocrystalline powder and thin film of vanadium dioxide: Electrical and infrared properties. J. Phys. Chem. Solids, 62 (7), 1229-1238.

  • Eyert, V. (2002). The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys., 11 (9), 650-702.

  • Wang, Y., Zhang, Z., Zhu, Y., Li, Z., Vajtai, R., Ci, L., Ajayan, P. M. (2008). Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano, 2 (7), 1492-1496.

  • Bai, H., Cortie, M. B., Maaroof, A. I., Dowd, A., Kealley, C., Smith, G. B. (2009). The preparation of a plasmonically resonant VO2 thermochromic pigment. Nanotechnology, 20 (8), 085607.

  • Ding, N., Feng, X., Liu, S., Xu, J., Fang, X., Lieberwirth, I., Chen, C. (2009). High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochem. Commun., 11 (3), 538-541.

  • Liu, J., Li, Q., Wang, T., Yu, D., Li, Y. (2004). Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. Int. Ed., 43 (38), 5048-5052.

  • Chen, W., Peng, J., Mai, L., Yu, H., Qi, Y. (2004). Synthesis and characterization of novel vanadium dioxide nanorods. Solid State Commun., 132 (8), 513-516.

  • Kong, L., Liu, Z., Shao, M., Xie, Q., Yu, W., Qian, Y. (2004). Controlled synthesis of single-crystal VOx·nH2O nanoribbons via a hydrothermal reduction method. J. Solid State Chem., 177 (3), 690-695.

  • Li, G., Chao, K., Peng, H., Chen, K., Zhang, Z. (2007). Low-valent vanadium oxide nanostructures with controlled crystal structures and morphologies. Inorg. Chem., 46 (14), 5787-5790.

  • Wei, M., Sugihara, H., Honma, I., Ichihara, M., Zhou, H. (2005). A new metastable phase of crystallized V2O4·0.25H2O nanowires: Synthesis and electro-chemical measurements. Adv. Mater., 17 (24), 2964-2969.

  • Bai, L., Gao, Y., Li, W., Luo, H., Jin, P. (2008). Synthesis and atmospheric instability of well crystallized rod-shaped V2O4·2H2O powders prepared in an aqueous solution. J. Ceram. Soc. Jpn., 116 (1351), 395-399.

  • Wei, M., Qi, Z., Ichihara, M., Hirabayashi, M., Honma, I., Zhou, H. (2006). Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. J. Crys. Growth., 296 (1), 1-5.

  • Whittaker, L., Zhang, H., Banerjee, S. (2009). VO2 nanosheets exhibiting a well-defined metal-insulator phase transition. J. Mater. Chem., 19 (19), 2968-2974.

  • Godočíková, E., Baláž, P., Gock, E., Choi, W. S., Kim, B. S. (2006). Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technol., 164 (3), 147-152.

  • Dodd, A. C., McCormick, P. G. (2001). Synthesis of nanoparticulate zirconia by mechanochemical processing. Scr. Mater., 44 (8-9), 1725-1729.

  • Billik, P., Čaplovičová, M., Janata, J., Fajnor, V.Š (2008). Direct synthesis of nanocrystalline, spherical α-Mn2O3 particles by mechanochemical reduction. Mater. Lett., 62 (6-7), 1052-1054.

  • Billik, P., Čaplovičová, M. (2009). Synthesis of nanocrystalline SnO2 powder from SnCl4 by mecha-nochemical processing. Powder Technol., 191 (3), 235-239.

  • Trudeau, M. L., Schulz, R., Dussault, D., Van Neste, A. (1990). Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys. Rev. Lett., 64 (1), 99-102.

  • Koch, C. C. (1997). Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruc. Mater., 9 (1-8), 13-22.

  • Huang, B., Perez, R. J., Crawford, P. J., Sharif, A. A., Nutt, S. R., Lavernia, E. J. (1995). Mechanically induced crystallization of metglas Fe78B13Si9 during cryogenic high energy ball milling. Nanostruct. Mater., 5 (5), 545-553.

  • Wang, X., Li, Y. (2003). Synthesis and formation mechanism of manganese dioxide nanowires/nano-rods. Chem.-Eur. J., 9 (1), 300-306.

  • Hagrman, D., Zubieta, J., Warren, C. J., Meyer, L. M., Treacy, M. M. J., Haushalter, R. C. (1998) A new polymorph of VO2 prepared by soft chemical methods. J. Solid State Chem., 138 (1), 178-182.

  • Wei, M., Konishi, Y., Zhou, H., Sugihara, H., Arakawa, H. (2004). A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem. Phys. Lett., 400 (1-3), 231-234.

  • Manivannan, V., Parhi, P., Howard, J. (2008). Mechanochemical metathesis synthesis and characterrization of nano-structured MnV2O6·xH2O (x = 2, 4). J. Cryst. Growth, 310 (11), 2793-2799.

  • Liu, X., Fu, S., Huang, C. (2005). Synthesis, characterization and magnetic properties of β-MnO2 nanorods. Powder Technol., 154 (2-3), 120-124.

  • Cao, J., Wu, J. (2011). Strain effects in low-dimensional transition metal oxides. Mater. Sci. Eng.-Reports, 71 (2-4), 35-52.


Journal + Issues