Cite

The production of two-wheeled rolling stock represents, at first glance, a simple assembly process that significantly affects the overall functionality and safety of the vehicle. This is due to residual stresses that arise after assembly by pressing the wheel on the axle. The state of stress after assembly remains in the design has a decisive influence on the load-bearing capacity of the two-wheel drive, its lifespan but also the transfer of the pulling force in the case of locomotives. Therefore, it is very important to find suitable methods for determining residual stresses. Numerical and experimental approaches are already in place to gain information on the state of stress after compression, or during a real operation. The developed techniques and tools for estimation of residual stresses in locomotive wheel treads based on the acoustoelasticity effect using electromagnetic acoustic transformation are described in the paper. The original results of residual stress measurement in the treads during a technological cycle of locomotive wheel pair manufacturing are presented.