Energy Characteristics of Asynchronous Electric Drive

Sergiej German-Galkin 1 , Vladimir Sakharov 2 , and Dariusz Tarnapowicz 3
  • 1 Maritime University of Szczecin,
  • 2 Admiral Makarov State University of Maritime and Inland Shipping,
  • 3 Maritime University of Szczecin,


Energy aspects are fundamental to the design of electric drive systems. This article describes energy performance for asynchronous electric drives based on various control methods. These electric drives comparison shows that vector control methods have a significant advantage over scalar control methods. The asynchronous electric drive mathematical description is based on vector control theory and main component method. Equations, obtained by mathematical description, allow calculating of the currents, voltages and electric power at the output when the electromagnetic torque and speed machine are set. Energy characteristics of the asynchronous drive were obtained with the use of the MATLAB-SIMULINK simulation program.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] F. Blaschke. “Das Prinzip der Feldorientierung-die Grundlage fur die Transvektor-Regulung von Drehfeldmaschienen”. Siemens: Z., 1972, №1, pp. 757- 760.

  • [2] L. Boychuk. Method of structural synthesis of nonlinear automatic control systems. Energy: Moscow, 1971, p. 321.

  • [3] Braslawski, Z. Ishmatov and E. Barac. „Adaptive direct control moment of asynchronous drives”. Electrical engineering, vol. 1, pp. 19-24, 2001, no. 11.

  • [4] V. Brodovski and E. Ivanov. Elektric drives with frequency- current control. Energy: Moscow, 1974, pp. 168.

  • [5] A. A. Bulgakov. A new theory of control rectifiers. Nauka: Moscow, 1970, p. 276.

  • [6] M. Depenbrock. “Direct Self-Control (DSC) of Inverter- Fed Induction Machine”. IEEE Transaction On Power Electronics, 1988, Vol. 3, no. 4.

  • [7] S. G. German Galkin. Virtual laboratory of semiconductor systems in Matlab-Simulink Wednesday. Lane: S. Petersburg, 2013, p. 450.

  • [8] K. Kovacs and I. Raz Transitional processes in machines of alternetic current. Gosjenergoizdat: Moscow- Leningrad, 1963, p. 789.

  • [9] T. Orłowska–Kowalska. Sensorless induction motor drives. University of Technology Press: Wroclaw, 2003, p. 165.

  • [10] O.S. Popow. Elementy teorii systemowsystemy dynamiczne. Politechnika Szczecińska, Wydział Informatyki: Szczecin, 2005, p. 233.

  • [11] A.S. Sandler and R.S. Sarbatov. Automatic frequency control of induction motors. Energiia: Moscow, 1974, p. 163.

  • [12] O. Slezhanovskij, L. Dackovskij, I. Kuznetsov, E. Lebedev, L. Tarasenko. The slave systems for control electric drive with semicondactor converters. Energoatomizdat: Moscow, 1983, pp. 342.

  • [13] G. G. Sokolovski. AC electric drives with frequency control. Academy: Moscow, 2006, p. 318.

  • [14] I. Takahashi, T. Noguchi. „New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”. IEEE Transaction On Industry Application, 1986. Vol. 22, no 5.

  • [15] D. Tarnapowicz, S. German-Galkin. “Energy optimization of mechatronic systems with PMSG”, “3rd International Conference on Energy and Environmental Protection”. 2018, Vol. 46, pp. 1-8. DOI: 10.1051/e3sconf/20184600016.


Journal + Issues