The Comparing of the Selected Temperature Sensors Compatible with the Arduino Platform

Open access


One of the most frequently measured quantity is temperature, which is also one of the most important physical quantities. Temperature has influence on the almost all states and processes in the nature as well as in technique. A wide range of temperature sensors is currently available on the market. They use different measurement principles and exist in many designs. According to the location of the sensing element in the measured environment, they are divided into two main groups: contact and non-contact. Further, we can divide the temperature sensors according to the physical principle on which they work. The article deals with the analysis and comparison of selected Arduino-compatible contact temperature sensors. The temperature measurement of machine functional nodes and its diagnostics are part of maintenance and engineering diagnostics. At present, NC and CNC machine diagnostics are an important trend in machine condition monitoring and machine status prediction to maintain production quality. Machine status monitoring allows reducing of machine service costs as well as maintaining the high production quality.

[1] M. Kreidl. Měření teploty – Senzory a měřící obvody. Praha: BEN – technická literatura, 2005.

[2] P. Beneš, J. Chlebný, J. Král, J. Langer and M. Martinásková. Automatizace a automatizační technika 3 – Prostředky automatizační techniky. Brno: Computer Press, 2014.

[3] L. Chybowski, K. Gawdzińska and B. Wiśnicki. “Qualitative importance measures of systems components – a new approach and its applications”. Management Systems in Production Engineering, vol. 24, no. 4, pp. 237-246, 2016.

[4] J. Šturcel. Snímače a prevodníky. Bratislava: Vydavateľstvo STU, 2002.

[5] P. Koleda, P. Koleda and S. Grúbel. “Analysis of temperatures in the mould area during the process of engine cylinder heads casting”. Acta facultatis technicae, vol. 1, pp. 31-40, 2016.

[6] S. Gierej. “Big data in the industry – overview of selected issues”. Management Systems in Production Engineering, vol. 25, no. 4, pp. 251-254, 2017.

[7] M. Kreidl and R. Šmíd. Technická diagnostika – Senzory, metody, analýza signálu. Praha: BEN – technicka literatura, 2006.

[8] P. Beneš, J. Janeček, J. Král, G. Künzel, B. Lacko, J. Semerád, P. Souček, L. Šmejkal, R. Voráček, L. Maixner and B. Šulc. Automatizace a automatizační technika 1 – Systémové pojetí automatizace. Brno: Computer Press, 2012.

[9] R. Strnad. “Měřeni teploty – porozumění vlastnostem měřicího přístroje”. Automa, vol. 15, no. 6, pp. 31-38, 2009.

[10] S. Surya and S.S. Chauhan. “Water Level Indicator with Temperature Sensor”. IOSR Journal of Electrical and Electronics Engineering, vol. 10, no. 3, pp. 65-71, 2015.

[11] P.D. Patil and R.D. Patil. “Designing Multisensor Embedded System Using PSoC”. International Journal of Current Advanced Research, vol. 8, no. 4, pp. 271-274, 2015.

[12] G. Gricius, D. Drungilas, A. Andziulis, D. Dzemydiene, M. Voznak, M. Kurmis and S. Jakovlev. “Advanced Approach of Multiagent Based Buoy Communication”. The Scientific World Journal, vol. 2015, 2015.

[13] H. Jing. “Design and Development of the Temperature Detection System”. International Journal of Control and Automation, vol. 8, no. 2, pp. 409-416, 2015.

[14] Ľ. Naščák and P. Koleda. “Regulácia teploty modelu teplovzdušnej sušiarne programovateľným automatom”. Acta facultatis technicae, vol. 1, pp. 127-133, 2014.

[15] I.V. Abramov, A.I. Abramov, Z.R. Nikitin, E. Sosnovich, P. Božek and V. Stollmann. “Diagnostics of Electrical Drives”, in Proc. of International Conference on Electrical Drives and Power Electronics, 2015, pp. 364-367.

[16] P. Frankovský, O. Ostertag, F. Trebuňa, E. Ostertagová and M. Kelemen. “Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity”. Applied optics, vol. 55, no. 18, pp. 4856-4864, 2016.

[17] K. Masláková, F. Trebuňa, P. Frankovský and M. Binda. “Applications of the strain gauge – for determination of residual stresses using ring-core method”. Procedia Engineering, vol. 48, pp. 396-401, 2012.

[18] T. Stejskal, J. Kovac and S. Valencik. “Mechanism of randomness in vibration signals of machinery”, in Proc. of International Conference on Industrial, Service and Humanoid Robotics, 2012, pp. 257-262.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 354 353 20
PDF Downloads 435 435 38