Structural and optical studies of TiO2:Ag2O nanocomposite by sol-gel method

Vaibhav Koutu 1 , Rajesh Dhakar 1 , Pragya Ojha 1 , Lokesh Shastri 1 ,  and M.M. Malik 1
  • 1 Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal, India

Abstract

As TiO2 is suitable for electronic and electrical applications, in the present work the authors have successfully modified TiO2 by adding silver (Ag) to form titanium oxide-silver oxide (TiO2:Ag2O) nanocomposite samples by using sol-gel technique. Characterizations of these composites have been performed using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV-Vis spectroscopy. XRD study revealed that the crystal structure of the samples consisted of tetragonal and cubic phases. This study further showed an increment in the average crystallite size from 8 nm to 38 nm with an increase in Ag concentration. The increase in crystallite size has been confirmed additionally by SEM and AFM. The increment in the average particle size of the samples may be attributed to an increase in silver molarity in the TiO2 matrix. Significant red shift in the absorption edge has been observed, causing reduction in the energy bandgap of the composites from 3.89 eV to 3.46 eV with an increase in particle size which is evident from UV-Vis spectroscopic studies. This wide-band gap properties of the TiO2:Ag2O nanocomposite make it suitable for memory-storage devices and dielectric applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grätzel M., Nature, 414 (2001), 338.

  • [2] Fujishima A., Honda K., Nature, 238 (1972), 37.

  • [3] Chen X., Mao S. S., Chem. Rev., 107 (2007), 2891.

  • [4] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 293 (2001), 269.

  • [5] Burda C., Lou Y., Chen X., Samia A. C. S., Stout J., Gole J. L., Nano Lett., 3 (2003), 1049.

  • [6] Iijima S., Nature, 354 (1991), 56.

  • [7] Zhong Z., Lin M., Ng V., Ng G. X. B., Foo Y., Gedanken A., Chem. Mater., 18 (2006), 6031.

  • [8] Cao S., Yeung K. L., Yue P. L., Appl. Catal. B, 76 (2007), 64.

  • [9] Kumar R.; Reda M. El-Shishtawy, Barakat M. A., Catalysts, 6 (2016), 76.

  • [10] Wang S., Mingtai W., Yong L., Lide Z., J. Mater. Sci. Lett., 18 (1999), 2009.

  • [11] Zheng Mao-Ping, Yan-Ping J., Guo-Liang J., Ming-Yuan G., J. Mater. Sci. Lett., 19 (2000), 433.

  • [12] Waghmode Babasaheb J., Husain Z., Joshi M., Sathaye Shivaram D., Patil Kashinath R., Malkhede Dipalee D., J. Polym. Res., 23 (2016), 1.

  • [13] Habib M. D. Ahsan, Shahadat M. D. Tusan, Bahadur N. M., Ismail Iqbal Mi, Mahmood Abu Jafar, Int. Nano Lett., 3 (2013), 1.

  • [14] Ashok C. H., Rao V. K., Shilpa C. CH., J. Nanomater. Mol. Nanotechnol., 5 (2016), 12.

  • [15] Ashok C. H., Venkateswara R., Shilpa C. Ch., J. Nanomed. Nanotech., (2015).

  • [16] Govindhan P., Pragathiswaran C., J. Mater. Sci.: Mat. El., 27 (2016), 8778.

  • [17] Tan X., Xiangli L., Tao Y., Yang Z., Trans. Tianjin Univ., 22 (2016), 211.

  • [18] Khojasteh H., Masoud Salavati-Niasari, Ali A., Farshid A., Morteza E., J. Mater. Sci.: Mat. El., 27 (2016), 1261.

  • [19] Rusu E., Ursaki V., Gutul T., Vlazan P., Siminel A., in: 3 rd International Conference on Nanotechnologies and Biomedical Engineering, Springer Singapore, (2016) 93.

  • [20] Kumar A., Jose R., Fujihara K., Wang J., Ramakrishna S., Chem. Mater., 19 (2007), 6536.

  • [21] Chen D., Fuzhi H., Yi-Bing C., Rachel A. C., Adv. Mater., 21 (2009), 2206.

  • [22] Weibel A., Renaud B., Boulc’ F., Knauth P., Chem. Mater., 17 (2005), 2378.

  • [23] Thiruvenkatachari R., Vigneswaran S., Moon I. S., Korean J. Chem. Eng., 25 (2008), 64.

  • [24] Yang J., Mei S., Ferreira J. M. F., Materials Science Forum, Trans Tech Publications, 455 (2004), 556.

  • [25] Navin K., Kurchania R., Appl. Phys. A-Mater., 121 (2015), 1155.

  • [26] Yang J., Mei S., Ferreira J. M. F., J. Colloid Interf. Sci., 260 (2003), 82.

  • [27] Yang J., Mei S., Ferreira J. M. F., J. Eur. Ceram. Soc., 24 (2004), 335.

  • [28] Bindu P., Thomas S., J. Theoretic. Appl. Phys., 8 (2014), 123.

  • [29] Koutu V., Shastri L., Malik M. M., Mater. Res. Express, 4 (2017), 034001.

  • [30] Li Xiao-Lin, Peng Q., Yi Jia-Xiang, Wang X., Li Y., Chem. Eur. J., 12 (2006), 2383.

  • [31] Wang X., Zhuang J., Peng Q., Li Y., Nature, 437 (2005), 121.

  • [32] Willander M., Nur O., Sadaf J. R., Qadir M. I., Zaman S., Zainelabdin A., Bano N., Hussain I., Materials, 3 (2010), 2643.

  • [33] Satoh N., Nakashima T., Kamikura K., Yamamoto K., Nature Nanotechnol., 3 (2008), 106.

  • [34] Wen Bao-Mei, Liu Chun-Yan, Liu Y., New J. Chem., 29 (2005), 969.

  • [35] Wen Bao-Mei, Liu Chun-Yan, Liu Y., J. Phys. Chem. B, 109 (2005), 12372.

  • [36] Kim Chung-Sik, Moon B. K., Park Jong-Ho, Choi Byung-Chun, Seo Hyo-Jin, J. Cryst. Growth, 257 (2003), 309.

  • [37] Ashrafi A., Quantum Confinement: An Ultimate Physics of Nanostructures in: Umar A. (Ed.), Encyclopedia of Semiconductor Nanotechnology, American Scientific Publishers, California, 2011, p. 1.

  • [38] Chapter 3. UV-Vis and PL Spectroscopy of ZnO Nanorods and Nanotubes, in: Challa S.S., Kumar R. (Eds.), UV-Vis and Photoluminescence Scpectroscopy for Nanomaterials Characterization, p. 63.

OPEN ACCESS

Journal + Issues

Search