Synthesis and characterization of poly(p-phenylenediamine): TiO2 nanocomposites and investigation of conducting properties for optoelectronic application

S. Baruah 1 , N. Devi 1 ,  and A. Puzari 1
  • 1 Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Pin: 797103, India

Abstract

Poly(p-phenylenediamine) is a potential precursor for designing of new materials for optoelectronic application. Synthesis and characterization of poly(p-phenylenediamine) – TiO2 nanocomposites has been demonstrated. Structural change observed due to the formation of nanocomposites was correlated with concomitant change in conducting behavior of the parent polymer. Polymer nanocomposite was synthesized through an in-situ oxidative polymerization technique with simultaneous dispersion of TiO2 nanoparticles. TiO2 nanoparticles were synthesized via sol-gel process. Structural characterization was accomplished by using conventional spectroscopic and imaging techniques. I-V measurement of the nanocomposites revealed that the nearly nonconducting poly(p-phenylenediamine) after structural modification exhibits conductivity of 10−6 S/cm leading to formation of wide band gap semiconducting materials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Troisi A., Nature. Mat., 8 (2009), 538.

  • [2] Painter P. C., Coleman M. M., Tech. Pub. CO Lan. PA., (1997).

  • [3] Naegele D., Bitthn R., Solid. State. Ionics, 28 (1988), 983.

  • [4] Muench S., Wild A., Friebe C., Häupler B., Janoschka T., Schubert U.S., Chem. Rev., 116 (16) (2016), 9438.

  • [5] (a) Blankenburg L., Sensfuss S., Schache H., Marten J., Milker R., Schrodner M., Synth.Met., 199 (2015), 93. (b) Benanti T.L., Venkataraman D., Photosynth. Res., 87 (2006), 73.

  • [6] Bakhshi A.K., Valla G., Mater. J. Sci. Ind. Res., 63 (2004), 715.

  • [7] Kovacic P., Jones M. B., Chem. Rev., 87 (2) (1987), 357.

  • [8] Puzari A., Baruah J. B., React. Funct. Polym., 47 (2001), 147.

  • [9] (a) Xu J.C., Liu W.M., Li H.L., Mater. Sci. Eng., 25 (4) (2005), 444. (b) Arora R., Mandal U.K., Sharma P., Srivastav A., Mater. Today Proc., 2 (2015), 2767.

  • [10] (a) Avu A., Ok A., Synth. Met., 157(2007), 235. (b) Ganesan R., Gedanken A., Nanotech., 19 (43) (2008), 435709. (c) Gangopadhyay R., de A., Ghosh G., Synth. Met., 123 (2001), 21.

  • [11] Song Y., Zhang J., Yang L., Cao S., Yang H., Zhang J., Jiang L., Dan Y., Rendu P.L., Nguyen T.P., Mater. Sci. Semicond. Proc., 42 (1) (2016), 54.

  • [12] (a) Zhang Z.L., Li J.F., Wang X.L., Qin J.Q., Shi W.J., Liu Y.F., Gao H.P., Mao L., Nanoscale. Res. Let., 12 (2017), 43. (b) Tsai T.Y., Yan P.R., Yang S.H., Nanoscale Res. Let., 11 (2016), 516.

  • [13] Perumal S., Sambandam C.G., Prabu K. M., Ananthakumar S., Int. J. Res. Eng. Tech., 3 (4) (2014), 651.

  • [14] Baruah S., Puzari A., Inorg. Nano. Met. Chem., 47 (11) (2017), 1542.

  • [15] Chen T., Liang B., Xin X., J. Phys. Chem. Solid., 58 (1997), 951.

  • [16] Sang L., Zhao Y., Burda C., Chem. Rev., 114 (19) (2014), 9283.

  • [17] Tao P., Li Y., Rungta A., Viswanath A., Gao J., Benicewicz B. C., Siegela R. W., Schadler L.S., J. Mater. Chem., 21 (2011), 18623.

  • [18] Cataldo F., Eur. Polym. J., 32 (1) (1996), 43.

  • [19] Mederos A., Dominguez S., HernandezMolina R., San-Chiz J., Brito F., Coord. Chem.Rev., 195 (1999), 857.

  • [20] Zhang L., Liu P., Su Z., Polym. Degrad. Stab., 91 (2006), 2213.

  • [21] Kutvonen A., Rossi G., Puisto S.R., Rostedt N.K.J., Nissila T.A., J. Chem Phys., 137 (2012), 901.

  • [22] Avinash B.S., Chaturmukha V.S., Jayanna H.S., Naveen C.S., Rajeeva M.P., Harish B.M., Suresh S., Lamani R., AIP Conf. Proc., 1728 (2016), 20426.

  • [23] Nakamura J., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K., J. Mol. Catal., 161 (2000), 205.

  • [24] Yoshikawa A., Matsunami H., Nanishi Y., Wide Bandgap Semiconductors. Springer, 2 (2007).

  • [25] Liu B., Wen L., Zhao X., Mater. Chem. Phys., 106 (2007), 350.

  • [26] Liqiang J., Yichun Q., Baiqi W., Shudan L., Baojiang J., Libin Y., Wei F., Honggang F., Jiazhong S., Sol. Energy Mater. Sol. C., 90 (2006), 1773.

  • [27] Abazovic N.D., Comor M.I., Dramicanin M.D., Jovanovic D.J., Ahrenkiel S.P., Nedeljkovic J.M., J. Phy. Chem. B., 110 (50) (2006), 25366.

  • [28] Lin C.C., Lee W.S., Sun C.C., Whu W.I.I., Ceram. Int., 34 (2008), 131.

  • [29] Peng C., Zhang S., Jewell D., Chen G.Z., Prog. Nat. Sci., 18 (7) (2008), 777.

  • [30] (a) Yang T., Zhou N., Zhang Y., Zhang W., Jiao K., Li G., Biosens. Bioelectron., 24 (2009), 216. (b) Korkut S., Keskinler B., Erhan E., Talanta., 76 (2008), 1147.

  • [31] Azulay D., Fylon M., Eshkenazi Q., Toker D., Balberg M., Shimoni N., Millo O., Balberg I., Phys. Rev. Lett., 90 (2003), 23660.

  • [32] Nikolaeva E.V., Ozerin S.A., Grigoriev E.I., Chvalun S.N., Gerasimov G.N., Trakhtenberg L.I., Mater. Sci. Eng. C., 8 (1999), 217.

  • [33] Trlica J., Saha P., Quadrat O., Stejskal J., Physica A, 283 (2000), 337.

OPEN ACCESS

Journal + Issues

Search