Microwave synthesis of Zn:Mn:PbI2 micro-size nanosheets and their characterizations

Mohd. Shkir 2 , M.S. Al-Kotb 3 , I.S. Yahia 1 , 2 , 4 , T. Alshahrani 5 , S. Alfaify 2 ,  and M.M. Abutalib 6 , 7
  • 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
  • 2 Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • 3 Physics Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
  • 4 Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
  • 5 Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
  • 6 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
  • 7 Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia

Abstract

Herein, we are reporting, for the first time, a microwave-assisted synthesis of lead iodide (PbI2) nanosheets (NSs) with codoping of Zn and Mn, confirmed by SEM/EDX. In the co-doping Mn concentration was kept at a constant level (i.e. 15 %) while Zn concentration was varied from 1 wt.% to 10 wt.%. The morphological analysis confirming presence of the dopant was done through SEM/EDX. The single phase and polytypic nature of NSs were established by XRD and FT-Raman examinations. Homogeneous doping of Mn and Zn in prepared PbI2 NSs was confirmed by SEM mapping analysis. The dielectric and electrical properties were measured by preparing a compact pellet of NSs at 49820 Pa pressure. The dielectric constant and electrical conductivity were enhanced by Zn:Mn co-doping in PbI2. The radiation activity was tested by cesium-137 (137Cs) radioactive source and its increase resulting from the doping was observed. The enhanced properties suggest that the prepared NSs may be useful in electro-optic and radiation detection device applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Pazos-Outón L.M., Szumilo M., Lamboll R., Richter J.M., Crespo-Quesada M., Abdi-Jalebi M., Science, 351 (2016), 1430.

  • [2] Wakamiya A., Endo M., Sasamori T., Tokitoh N., Ogomi Y., Hayase S., Chem. Lett., 43 (2014), 711.

  • [3] Yamada Y., Nakamura T., Endo M., Wakamiya A., Kanemitsu Y., J. Am. Chem. Soc., 136 (2014), 11610.

  • [4] Street R.A., Rahn J.T., Ready S.E., Shah K.S., Bennett P.R,. Dmitriyev Y.N., Int. J. Soc. Opt. Photon., 3659 (1999), 36.

  • [5] Antonuk L., Jee K.-W., El-Mohri Y., Maolinbay M., Nassif S., Rong X., Med. Phys., 27 (2000), 289.

  • [6] Street R., Ready S., Schuylenbergh van K., Ho J., Boyce J., Nylen P., J. Appl. Phys., 91 (2002), 3345.

  • [7] Bennett P.R., Shah K.S., Dmitriev Y., Klugerman M., Gupta T., Squillante M., Nuc. Instrum. Meth. Phys. Res. Sec. A, 505 (2003), 269.

  • [8] Arico A.S., Bruce P., Scrosati B., Tarascon J.- M., Schalkwijk van W., Nat. Mater., 4 (2005), 366.

  • [9] Empedocles S., Bock L., Chow C., Duan X., Niu C., Pontis G., Google Patents, 2005.

  • [10] Sengupta A., Mandal K., Zhang J., J. Phys. Chem. B, 104 (2000), 9396.

  • [11] Zhu Q.-A., Zhang Q., Liu G.-S., Wang X.-Y., Sun X.-F., Chen W.-P., Chem. J. Chin, Univ., 6 (2007), 007.

  • [12] Shkir M., Yahia I.S., Alfaify S., Abutalib M.M., Muhammad S., J. Mol. Struct., 1110 (2016), 83.

  • [13] Kaviyarasu K., Sajan D., Selvakumar M.S., Augustine Thomas S., Prem Anand D., J. Phys. Chem. Sol., 73 (2012), 1396.

  • [14] Shkir M., Alfaify S., Sci. Rep., 7 (2017), 16091.

  • [15] Shkir M., Yahia I.S., Ganesh V., Bitla Y., Ashraf I.M., Kaushik A., Sci. Rep., 8 (2018), 13806.

  • [16] Alfaify S., Shkir M., Opt. Mater., 88 (2019), 417.

  • [17] Shkir M., Yahia I.S., Ganesh V., Algarni H., Alfaify S., Mater. Lett., 176 (2016), 135.

  • [18] Shkir M., Alfaify S., Yahia I.S., Ganesh V., Shoukry H., Phys. B: Condens. Mat., 508 (2017), 41.

  • [19] Yahia I., Abutalib M., J. Mol. Struct., 1138 (2017), 215.

  • [20] Bhavsar D., Saraf K., Mater. Chem. Phys., 78 (2003), 630.

  • [21] Matuchova M., Zdansky K., Zavadil J., Maixner J., Alexiev D., Prochazkova D., Mater. Sci. Sem. Proc., 9 (2006), 394.

  • [22] Rybak O., Inorg. Mater., 50 (2014), 205.

  • [23] Shkir M, Khan A, Ansari A.A., El-Toni A.M., Yahia I.S., Khan M.A., Vacuum,173 (2020), 109122.

  • [24] Cao Y., Pan W., Zong Y., Jia D., Sensor. Actuat. B Chem., 138 (2009), 480.

  • [25] Mohd S., Khan Z.R., Hamdy M.S., Algarni H., Alfaify S., Mater. Res. Exp., 5 (2018), 095032.

  • [26] Shkir M., Kilany M., Yahia I.S., Ceram. Int., 43 (2017), 14923.

  • [27] Sears W.M., Klein M., Morrison J., Phys. Rev. B., 19 (1979), 2305.

  • [28] Baltog I., Baibarac M., Mihut L., Preda N., Velula T., Bucur C., Rom. J. Phys., 54 (2009), 677.

  • [29] Suresh S., Appl. Nanosc., 4 (2014), 325.

  • [30] Chakrabarty N., Mukherjee A., Sinha S., Basu S., Meikap A., Phys. E., 64 (2014), 134.

  • [31] Shkir M., Khan A., Hamdy M., Alfaify S., Mater. Res. Express, 6 (12) (2020), 1250e6.

  • [32] Shkir M., Chandekar K.V., Khan A., El-Toni A.M., Alfaify S., Mater. Sci. Semicond. Proc., 107 (2020), 104807.

  • [33] Hassan M.A., Jafar M.M., Matuchova M., Bulos B.N., J. Appl. Sci., 10 (2010), 3367.

  • [34] Glasser L., Hall P., Liebenberg D., J. Chem. Soc. A, 0 (1967), 295.

  • [35] Dugan A., Henisch H., J. Phys. Chem. Sol., 28 (1967), 971.

  • [36] Kaygili O., Dorozhkin S.V., Ates T., Gursoy N.C., Keser S., Yakuphanoglu F., Mater. Sci. Eng: C, 47 (2015), 333.

  • [37] Jonscher A.K., Nature, 267 (1977), 673.

  • [38] Zhu X., Wei Z., Jin Y., Xiang A., Cryst. Res. Techn., 47 (2007), 456.

  • [39] Shkir M., Alfaify S., Yahia I.S., Hamdy M.S., Ganesh V., Algarni H., J. Nanopart. Res., 19 (2017), 328.

OPEN ACCESS

Journal + Issues

Search